具有无限记忆的Bresse系统在纵向位移中的理论和计算衰减结果

IF 1.3 4区 数学 Q1 MATHEMATICS
M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi
{"title":"具有无限记忆的Bresse系统在纵向位移中的理论和计算衰减结果","authors":"M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi","doi":"10.3934/eect.2022027","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [<xref ref-type=\"bibr\" rid=\"b27\">27</xref>], [<xref ref-type=\"bibr\" rid=\"b4\">4</xref>], [<xref ref-type=\"bibr\" rid=\"b33\">33</xref>], [<xref ref-type=\"bibr\" rid=\"b58\">58</xref>] and [<xref ref-type=\"bibr\" rid=\"b34\">34</xref>]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"88 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement\",\"authors\":\"M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi\",\"doi\":\"10.3934/eect.2022027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [<xref ref-type=\\\"bibr\\\" rid=\\\"b27\\\">27</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b4\\\">4</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b33\\\">33</xref>], [<xref ref-type=\\\"bibr\\\" rid=\\\"b58\\\">58</xref>] and [<xref ref-type=\\\"bibr\\\" rid=\\\"b34\\\">34</xref>]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.</p>\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一个一维线性Bresse系统,它的第三个方程(纵向位移)中只有一个无限记忆项。在记忆核(松弛函数)的一般条件下,我们建立了系统能量的衰减估计。我们的衰减结果扩展并改进了文献[27]、[4]、[33]、[58]和[34]中得到的一些衰减率。该证明是基于能量法和凸性论证。数值模拟说明了理论的衰减结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement

In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [27], [4], [33], [58] and [34]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信