具有记忆板方程柯西问题的一般衰减结果

IF 1.3 4区 数学 Q1 MATHEMATICS
S. Messaoudi, Ilyes Lacheheb
{"title":"具有记忆板方程柯西问题的一般衰减结果","authors":"S. Messaoudi, Ilyes Lacheheb","doi":"10.3934/eect.2022026","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\mathbb{R}^n $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ n\\geq 1 $\\end{document}</tex-math></inline-formula>, given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{equation*} u_{tt}+\\Delta^2 u+ u+ \\int_0^t g(t-s)A u(s)ds = 0, \\end{equation*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id=\"M3\">\\begin{document}$ A = \\Delta $\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\"M4\">\\begin{document}$ A = -Id $\\end{document}</tex-math></inline-formula>. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"48 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A general decay result for the Cauchy problem of plate equations with memory\",\"authors\":\"S. Messaoudi, Ilyes Lacheheb\",\"doi\":\"10.3934/eect.2022026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\mathbb{R}^n $\\\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$ n\\\\geq 1 $\\\\end{document}</tex-math></inline-formula>, given by</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\begin{equation*} u_{tt}+\\\\Delta^2 u+ u+ \\\\int_0^t g(t-s)A u(s)ds = 0, \\\\end{equation*} $\\\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$ A = \\\\Delta $\\\\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$ A = -Id $\\\\end{document}</tex-math></inline-formula>. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.</p>\",\"PeriodicalId\":48833,\"journal\":{\"name\":\"Evolution Equations and Control Theory\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Equations and Control Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/eect.2022026\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022026","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space \begin{document}$ \mathbb{R}^n $\end{document}, \begin{document}$ n\geq 1 $\end{document}, given by \begin{document}$ \begin{equation*} u_{tt}+\Delta^2 u+ u+ \int_0^t g(t-s)A u(s)ds = 0, \end{equation*} $\end{document} with \begin{document}$ A = \Delta $\end{document} or \begin{document}$ A = -Id $\end{document}. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A general decay result for the Cauchy problem of plate equations with memory

In this paper, we investigate the general decay rate of the solutions for a class of plate equations with memory term in the whole space \begin{document}$ \mathbb{R}^n $\end{document}, \begin{document}$ n\geq 1 $\end{document}, given by

with \begin{document}$ A = \Delta $\end{document} or \begin{document}$ A = -Id $\end{document}. We use the energy method in the Fourier space to establish several general decay results which improve many recent results in the literature. We also present two illustrative examples by the end.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信