Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement

IF 1.3 4区 数学 Q1 MATHEMATICS
M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi
{"title":"Theoretical and computational decay results for a Bresse system with one infinite memory in the longitudinal displacement","authors":"M. Alahyane, M. Al‐Gharabli, Adel M. Al-Mahdi","doi":"10.3934/eect.2022027","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [<xref ref-type=\"bibr\" rid=\"b27\">27</xref>], [<xref ref-type=\"bibr\" rid=\"b4\">4</xref>], [<xref ref-type=\"bibr\" rid=\"b33\">33</xref>], [<xref ref-type=\"bibr\" rid=\"b58\">58</xref>] and [<xref ref-type=\"bibr\" rid=\"b34\">34</xref>]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.</p>","PeriodicalId":48833,"journal":{"name":"Evolution Equations and Control Theory","volume":"88 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Equations and Control Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/eect.2022027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider a one-dimensional linear Bresse system with only one infinite memory term acting in the third equation (longitudinal displacements). Under a general condition on the memory kernel (relaxation function), we establish a decay estimate of the energy of the system. Our decay result extends and improves some decay rates obtained in the literature such as the one in [27], [4], [33], [58] and [34]. The proof is based on the energy method together with convexity arguments. Numerical simulations are given to illustrate the theoretical decay result.

具有无限记忆的Bresse系统在纵向位移中的理论和计算衰减结果
在本文中,我们考虑一个一维线性Bresse系统,它的第三个方程(纵向位移)中只有一个无限记忆项。在记忆核(松弛函数)的一般条件下,我们建立了系统能量的衰减估计。我们的衰减结果扩展并改进了文献[27]、[4]、[33]、[58]和[34]中得到的一些衰减率。该证明是基于能量法和凸性论证。数值模拟说明了理论的衰减结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution Equations and Control Theory
Evolution Equations and Control Theory MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.10
自引率
6.70%
发文量
5
期刊介绍: EECT is primarily devoted to papers on analysis and control of infinite dimensional systems with emphasis on applications to PDE''s and FDEs. Topics include: * Modeling of physical systems as infinite-dimensional processes * Direct problems such as existence, regularity and well-posedness * Stability, long-time behavior and associated dynamical attractors * Indirect problems such as exact controllability, reachability theory and inverse problems * Optimization - including shape optimization - optimal control, game theory and calculus of variations * Well-posedness, stability and control of coupled systems with an interface. Free boundary problems and problems with moving interface(s) * Applications of the theory to physics, chemistry, engineering, economics, medicine and biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信