{"title":"Predicting 360° Video Saliency: A ConvLSTM Encoder-Decoder Network With Spatio-Temporal Consistency","authors":"Zhaolin Wan;Han Qin;Ruiqin Xiong;Zhiyang Li;Xiaopeng Fan;Debin Zhao","doi":"10.1109/JETCAS.2024.3377096","DOIUrl":"10.1109/JETCAS.2024.3377096","url":null,"abstract":"360° videos have been widely used with the development of virtual reality technology and triggered a demand to determine the most visually attractive objects in them, aka 360° video saliency prediction (VSP). While generative models, i.e., variational autoencoders or autoregressive models have proved their effectiveness in handling spatio-temporal data, utilizing them in 360° VSP is still challenging due to the problem of severe distortion and feature alignment inconsistency. In this study, we propose a novel spatio-temporal consistency generative network for 360° VSP. A dual-stream encoder-decoder architecture is adopted to process the forward and backward frame sequences of 360° videos simultaneously. Moreover, a deep autoregressive module termed as axial-attention based spherical ConvLSTM is designed in the encoder to memorize features with global-range spatial and temporal dependencies. Finally, motivated by the bias phenomenon in human viewing behavior, a temporal-convolutional Gaussian prior module is introduced to further improve the accuracy of the saliency prediction. Extensive experiments are conducted to evaluate our model and the state-of-the-art competitors, demonstrating that our model has achieved the best performance on the databases of PVS-HM and VR-Eyetracking.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 2","pages":"311-322"},"PeriodicalIF":3.7,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140171922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Circuits and Systems Society","authors":"","doi":"10.1109/JETCAS.2024.3364895","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3364895","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"C3-C3"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Incoming Editorial","authors":"Wen-Hsiao Peng","doi":"10.1109/JETCAS.2023.3335798","DOIUrl":"https://doi.org/10.1109/JETCAS.2023.3335798","url":null,"abstract":"The IEEE Journal On Emerging and Selected Topics in Circuits and Systems (JETCAS) is a periodical sponsored by the IEEE Circuits and Systems Society (CASS). Since its advent about a decade ago, JETCAS has published quarterly special issues on emerging and selected topics that cover the entire field of interest of the CASS. Particular emphasis has been put on emerging areas that are expected to grow over time in scientific and professional importance. For example, the special issues published in the last two years touched upon industry x.0 applications, unconventional computing techniques, memristive circuits and systems, quantum computation, processing-in-memory machine learning, and highly renewable penetrated power systems. Some of these special issues have become valuable references in many forefront technology developments within and beyond CASS. Thanks to the strong leadership by Prof. Ho Ching (Herbert) Iu, the outgoing Editor-in-Chief, and the remarkable work of his editorial board, JETCAS is now one of the leading journals in the CASS, with an impact factor of 4.6-5.8 from 2022 to 2023. Its LinkedIn profile page (\u0000<uri>https://bit.ly/3FLIBFs</uri>\u0000) has attracted more than 1000+ followers since it went online in 2020.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"1-2"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems Publication Information","authors":"","doi":"10.1109/JETCAS.2024.3364891","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3364891","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"C2-C2"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TechRxiv: Share Your Preprint Research with the World!","authors":"","doi":"10.1109/JETCAS.2024.3371131","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3371131","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"143-143"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Zhu;Roberto Gómez-García;Chun-Hsing Li;Bryan Schwitter
{"title":"Guest Editorial: Integrated Devices, Circuits, and Systems for the 6G Era","authors":"Xi Zhu;Roberto Gómez-García;Chun-Hsing Li;Bryan Schwitter","doi":"10.1109/JETCAS.2024.3367094","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3367094","url":null,"abstract":"This Special Issue of the IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) is dedicated to demonstrating the latest research progress on integrated devices, circuits and systems for the 6G Era. As 5G rolls out worldwide, teams of visionary experts are developing roadmaps and revolutionary applications for the next-generation wireless network: 6G. Indeed, the 6G mobile networks will establish new standards to fulfill the unreachable performance required by the current 5G networks. It is anticipated that 6G technology will be capable of supporting extremely high-performance connectivity with massive numbers of connected devices.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"3-6"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems information for authors","authors":"","doi":"10.1109/JETCAS.2024.3364893","DOIUrl":"https://doi.org/10.1109/JETCAS.2024.3364893","url":null,"abstract":"","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"142-142"},"PeriodicalIF":4.6,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140123405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Context Models for Point Cloud Geometry Compression With Context Feature Residuals and Multi-Loss","authors":"Chang Sun;Hui Yuan;Shuai Li;Xin Lu;Raouf Hamzaoui","doi":"10.1109/JETCAS.2024.3367729","DOIUrl":"10.1109/JETCAS.2024.3367729","url":null,"abstract":"In point cloud geometry compression, context models usually use the one-hot encoding of node occupancy as the label, and the cross-entropy between the one-hot encoding and the probability distribution predicted by the context model as the loss function. However, this approach has two main weaknesses. First, the differences between contexts of different nodes are not significant, making it difficult for the context model to accurately predict the probability distribution of node occupancy. Second, as the one-hot encoding is not the actual probability distribution of node occupancy, the cross-entropy loss function is inaccurate. To address these problems, we propose a general structure that can enhance existing context models. We introduce the context feature residuals into the context model to amplify the differences between contexts. We also add a multi-layer perception branch, that uses the mean squared error between its output and node occupancy as a loss function to provide accurate gradients in backpropagation. We validate our method by showing that it can improve the performance of an octree-based model (OctAttention) and a voxel-based model (VoxelDNN) on the object point cloud datasets MPEG 8i and MVUB, as well as the LiDAR point cloud dataset SemanticKITTI.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 2","pages":"224-234"},"PeriodicalIF":3.7,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neda Khiabani;Ching-Wen Chiang;Nai-Chen Liu;Pai-Yen Chen;Yen-Cheng Kuan;Chung-Tse Michael Wu
{"title":"Metamaterial-Enabled Ultrawideband mmWave Antenna-in-Package Using Heterogeneously-Integrated Silicon IPD and HDI-PCB for B5G/ 6G Applications","authors":"Neda Khiabani;Ching-Wen Chiang;Nai-Chen Liu;Pai-Yen Chen;Yen-Cheng Kuan;Chung-Tse Michael Wu","doi":"10.1109/JETCAS.2024.3358222","DOIUrl":"10.1109/JETCAS.2024.3358222","url":null,"abstract":"This work presents the design, creation, and testing of ultrawideband millimeter-wave (mmWave) antennas with a tightly coupled array (TCA) configuration. These antennas are made using metamaterial (MTM) designs and advanced high-density interconnect (HDI) antenna-in-package (AiP) technologies, ideal for beyond-5G (B5G) and 6G networks. The main elements of the MTM antenna array are constructed with silicon-based integrated passive device (IPD) technology and are flip-chip bonded to a multi-layered HDI-PCB that includes a resistive frequency selective surface (FSS). These array antennas are differentially fed through a coax-via system. The study presents two types of \u0000<inline-formula> <tex-math>$5times 5$ </tex-math></inline-formula>\u0000 finite arrays: a metal-insulator-metal (MIM) capacitor-based MTM bowtie array with a differential Voltage Standing Wave Ratio (VSWR) \u0000<inline-formula> <tex-math>$le3.5$ </tex-math></inline-formula>\u0000, operating from 16.2 to 100 GHz (excluding 18.26–18.68 GHz and 60.8–61.13 GHz), and an interdigital capacitor-based MTM bowtie array functioning from 18.85 to 100 GHz (excluding 41.52–42.25 GHz). Experimental validation of these prototypes confirms their performance, aligning well with simulated results in terms of bandwidth and radiation characteristics.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"7-18"},"PeriodicalIF":4.6,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A 299–315-GHz Dual-Band Radiator Array With Cascaded Transmission Line-Based Feedback Network for Phase Noise Improvement","authors":"Meng Yang;Chi Zhang;Liang Wu;Quan Xue","doi":"10.1109/JETCAS.2024.3357612","DOIUrl":"10.1109/JETCAS.2024.3357612","url":null,"abstract":"This paper presents a THz radiator array integrating two elements, each of which consists of two fundamental oscillators operating at half of the output frequency, a push-push frequency doubler and an on- chip square-shaped loop antenna. To improve the phase noise for the fundamental oscillators, a feedback network containing a long cascaded transmission line featuring high frequency selectivity is proposed. Then, the signal power is extracted through the use of a compact coupled line to drive the doubler, thereby making the integration of a multi-element array more manageable. Furthermore, the strength of the coupling between the two adjacent oscillators within each element is designed properly, yielding dual-band operation to extend the frequency range. Fabricated in a 65-nm bulk CMOS process, the radiator chip assembled with a crystal slab and a silicon lens achieves output frequency ranging from 299.2 to 314.8 GHz. The measured peak effective isotropically radiated power (EIRP) and radiated power are 3.9 and −16.1 dBm, respectively, while consuming 93-mW DC power from a 1.4-V power supply. The phase noise measures −79.9 dBc/Hz at 1-MHz offset from 312 GHz, corresponding to a figure-of-merit (FoM) of 170.1 dBc/Hz. The core area of the chip is \u0000<inline-formula> <tex-math>$0.65times 0.21$ </tex-math></inline-formula>\u0000 mm2, excluding the pads.","PeriodicalId":48827,"journal":{"name":"IEEE Journal on Emerging and Selected Topics in Circuits and Systems","volume":"14 1","pages":"41-51"},"PeriodicalIF":4.6,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139949176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}