Heriberto Alcocer-García, Juan Gabriel Segovia-Hernández, Eduardo Sánchez-Ramírez, Carlos Rodrigo Caceres-Barrera, Salvador Hernández
{"title":"Sequential Synthesis Methodology in the Design and Optimization of Sustainable Distillation Sequences for Levulinic Acid Purification","authors":"Heriberto Alcocer-García, Juan Gabriel Segovia-Hernández, Eduardo Sánchez-Ramírez, Carlos Rodrigo Caceres-Barrera, Salvador Hernández","doi":"10.1007/s12155-024-10765-0","DOIUrl":"10.1007/s12155-024-10765-0","url":null,"abstract":"<div><p>Levulinic acid is acknowledged as a significant high-value product derived from lignocellulosic biomass. Its acquisition involves acid hydrolysis, resulting in a challenging separation and purification process due to the formation of a dilute azeotropic mixture. This complexity renders separation costly and presents a hurdle for large-scale production. Various purification methods, including hybrid and intensified systems, have been proposed to address this issue. However, a systematic synthesis methodology incorporating multi-objective optimization considering economic and environmental factors has yet to be applied to this mixture. Hence, this study employs such a methodology to derive sustainable and thermodynamically feasible intensified designs. The optimization algorithm employed is differential evolution with a tabu list. Two objectives are considered: total annual cost as the economic criterion and the eco-indicator 99 as the environmental index. The intensified design, incorporating thermal coupling, presents the best results of the designs studied, with a total annual cost value of $13.9 million and 4.21 × 10<sup>9</sup> environmental points per year. This represents an economic saving of $4.6 million per year and reduces environmental impact by 1.15 × 10<sup>9</sup> points compared to the reference design, providing a sustainable alternative for purifying levulinic acid at a cost of $0.261 per kilogram.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1724 - 1738"},"PeriodicalIF":3.1,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
HakSoo Ha, Tristan R. Brown, Ryan J. Quinn, Timothy A. Volk, Robert W. Malmsheimer, Marie-Odile P. Fortier, Steven Bick, Jenny R. Frank
{"title":"A Stochastic Techno-Economic Analysis of Forest Biomass Feedstock Supply Chains: Clean and Dirty Chips for Bioenergy Applications","authors":"HakSoo Ha, Tristan R. Brown, Ryan J. Quinn, Timothy A. Volk, Robert W. Malmsheimer, Marie-Odile P. Fortier, Steven Bick, Jenny R. Frank","doi":"10.1007/s12155-024-10764-1","DOIUrl":"10.1007/s12155-024-10764-1","url":null,"abstract":"<div><p>This study reports results from a stochastic techno-economic analysis (TEA) model that assessed the financial feasibility of forest biomass harvest for low-carbon bioenergy feedstocks in the hardwood region of the Northeast United States. It analyzed three 24-year scenarios based on primary data collected from the mixed product harvest with whole tree harvesting systems that primarily produce clean chips, dirty chips, or pulpwood and dirty chips. Using a joint product costing approach, proportional costs of shared processes were allocated to different products on a mass basis. Uncertainty associated with key stochastic variables was incorporated into the model to generate net present values (NPV), benefit–cost ratios (BCR), and minimum selling prices (MSP) via Monte Carlo simulation. The clean chip scenario produced an NPV of $1.36 million and a BCR of 1.03, while the pulpwood scenario’s NPV and BCR ($0.06 million and 1.02) were lower, and the dirty chip scenario generated negative NPV (− $0.02 million) and a BCR of 0.99. The probabilities of achieving positive NPVs for all three scenarios fell between 47 and 56%. The mean MSP for one clean chip scenario was $94.03/dry Mg, while the mean MSPs for two dirty chip scenarios were $74.79/dry Mg and $75.93/dry Mg. NPV results were most sensitive to forest biomass feedstock harvesting production levels, transportation distances, and delivered prices, followed by diesel fuel consumption for in-wood harvest and diesel fuel price.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1739 - 1754"},"PeriodicalIF":3.1,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140883210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yaseen Elkasabi, Charles A. Mullen, Gary D. Strahan
{"title":"Solvent-Mediated Extraction of Phenolics from Mid-level Oxygen Content Pyrolysis Oils","authors":"Yaseen Elkasabi, Charles A. Mullen, Gary D. Strahan","doi":"10.1007/s12155-024-10756-1","DOIUrl":"10.1007/s12155-024-10756-1","url":null,"abstract":"<div><p>Technologies for producing renewable fuels and chemicals rely on the production of stable intermediates. For thermochemical technologies, pyrolysis of biomass produces oils that must compromise between carbon yield and oil quality. Bio-oil extraction has largely focused on regular bio-oils (~ 33 wt% O) and partially deoxygenated oils (< 12 wt% O). Furthermore, it is desired to extract phenolics without direct distillation of bio-oils, which would enable extraction from the heaviest portion of bio-oil. Mid-level oxygen (MLO) bio-oils (16–25 wt% O) produced from switchgrass were characterized for their ability to separate into phenolic-rich fractions. Toluene-soluble portions of the oils underwent NaOH extraction to extract one-ring phenolics, while toluene-insoluble portions were fractionated with iso-propyl alcohol (IPA). While phenolic extraction proceeded without distillation (having been a prerequisite for partially deoxygenated bio-oils), the efficiency of extraction was less than optimal, owing to the presence of other oxygenated compounds in the hydrocarbon-rich fraction. Both IPA-insoluble and IPA-soluble fractions underwent solvent liquefaction reactions with base additives. While using water as a reaction medium produced greater concentrations of phenols than when using methanol, addition of sodium carbonate produced narrower product distributions of phenols and inhibited formation of benzenediols.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1784 - 1793"},"PeriodicalIF":3.1,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140655990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive Evaluation of Biofuels from the Fermentation of Poplar Wood and the Gasification of Fermentation Residue","authors":"Wei Wang, Zhaoping Zhong, Xiaoming Bao, Xiaotian Pan, Xiang Zheng, Yuxuan Yang, Zhaocheng Shen","doi":"10.1007/s12155-024-10760-5","DOIUrl":"10.1007/s12155-024-10760-5","url":null,"abstract":"<div><p>In the process of poplar fermentation for ethanol, different methods are adopted to achieve efficient treatment and resource utilization of fermentation residues, which meets the current demand for green energy and carbon neutrality. Therefore, this work aims to establish an evaluation method on energy consumption, pollutant emissions, and cost expenditures in the production process for biofuels from poplar wood and residue. The process was simulated with commercial software (<i>Aspen Plus</i> for chemical production simulation and cost estimation and <i>eBalance</i> for LCA). Results showed that compared to FCE, it made a higher conversion efficiency of CFG because of the biojet fuel and gasoline from the gasification and conversion of residual lignin. And the flash evaporator, hydrolysis reactor, and fermentation reactor were components with the highest exergy loss. The economic cost of CFG was 9.63% less than that of FCE, and cellulase enzymes and poplar wood in variable costs were main factors in the total cost. Comparing environmental impacts from four perspectives, it was found that the total comprehensive impact of FCE was higher than that of CFG under each weight. The degree of influence of the first level indicator layer was energy consumption, environmental impact, and economic cost in descending order.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1543 - 1558"},"PeriodicalIF":3.1,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140664111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonia Pereira-Crespo, Noemi Gesteiro, Ana López-Malvar, Leonardo Gómez, Rogelio Santiago
{"title":"Assessing the Application of Near-Infrared Spectroscopy to Determine Saccharification Efficiency of Corn Biomass","authors":"Sonia Pereira-Crespo, Noemi Gesteiro, Ana López-Malvar, Leonardo Gómez, Rogelio Santiago","doi":"10.1007/s12155-024-10761-4","DOIUrl":"10.1007/s12155-024-10761-4","url":null,"abstract":"<div><p>Nowadays, in the bioethanol production process, improving the simplicity and yield of cell wall saccharification procedure represent the main technical hurdles to overcome. This work evaluated the application of a rapid and cost-effective technology such as near -infrared spectroscopy (NIRS) for easily predict saccharification efficiency from corn stover biomass. Calibration process focussing on the number of samples and the genetic background of the maize inbred lines were tested; while Modified Partial Least Squares Regression (MPLS) and Multiple Linear Regression (MLR) were assessed in predictions. The predictive capacity of the NIRS models was mainly determined by the coefficient of determination (r<sup>2</sup>ev) and the index of prediction to deviation (RPDev) in external validation. Overall, we could check a better efficiency of the NIRS calibration process for saccharification using larger number of observations (1500 sample set) and genetic backgrounds; while MPLS regression provided better prediction statistics (r<sup>2</sup>ev = 0.80; RPDev = 2.21) compared to MLR (r<sup>2</sup>ev = 0.68; RPDev = 1.75). These results indicate that NIRS could be successfully implemented as a large-phenotyping tool in order to test the saccharification potential of corn biomass.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1522 - 1532"},"PeriodicalIF":3.1,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12155-024-10761-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140669416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernanda Dias De Ávila, Benedict C. Okeke, Josiane Pinheiro Farias, Marcela da Silva Afonso, Márcio Santos Silva, Flávio Anastácio de Oliveira Camargo, Fátima Menezes Bento, Simone Pieniz, Robson Andreazza
{"title":"Bio-Oil Production from Fish Processing Waste Residues Using Oleaginous Rhodotorula sp. R1 After Conventional Oil Extraction","authors":"Fernanda Dias De Ávila, Benedict C. Okeke, Josiane Pinheiro Farias, Marcela da Silva Afonso, Márcio Santos Silva, Flávio Anastácio de Oliveira Camargo, Fátima Menezes Bento, Simone Pieniz, Robson Andreazza","doi":"10.1007/s12155-024-10749-0","DOIUrl":"10.1007/s12155-024-10749-0","url":null,"abstract":"<div><p>Fish waste is a major environmental pollution problem and requires costly treatment prior to disposal. Conversion of fish waste to economically important and eco-friendly products will make fishing and fish processing more valuable and sustainable. This study evaluated waste residues from fish processing waste subjected to conventional physical extraction of fish oil for single-cell oil production using oleaginous yeast. Potential application of the single-cell oil to produce biodiesel was evaluated. The treatment containing fish waste residue (5%, w/v) and glucose (20 g/L, w/v) displayed the highest rate (14%) of total lipid generation. The fish waste residue proved to be a good nitrogen source for the oleaginous yeast, <i>Rhodotorula</i> sp. R1. At 15% (w/v) fish waste residue and 20% (w/v) glucose amendment of the medium, the highest biomass production was observed. The yeast bio-oil has a lipid profile like vegetable oils and consists of mainly long-chain fatty acids (between C14 and C24) which are suitable for biodiesel production. The most abundant fatty acids were palmitic acid (C16:0), elaidic acid (C18:1n-9t), and stearic acid (C18:0). FTIR analysis of the transesterification reaction product using the yeast oil confirmed its conversion to biodiesel. Although glucose amendment of medium supported lipid accumulation, it can be replaced with wastes rich in sugars to decrease the cost of single-cell bio-oil production. Results indicate the potential secondary value of fish processing waste in the cultivation of oleaginous yeast for bio-oil and biodiesel production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1885 - 1894"},"PeriodicalIF":3.1,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Biodegradability of Coffee Husk and Water Hyacinth Using Food Waste: Synergistic and Kinetic Evaluation Under Co-digestion","authors":"Mohammed Kelif Ibro, Venkata Ramayya Ancha, Dejene Beyene Lemma, Marcel Pohl","doi":"10.1007/s12155-024-10750-7","DOIUrl":"10.1007/s12155-024-10750-7","url":null,"abstract":"<div><p>Considering the difficulty of digesting coffee husk (CH) and water hyacinth (WH) due to the lignin content, the present study investigated the influence of feedstock mixing ratios on the co-digestion performance of CH and WH with food waste (FW) at 38 ± 1 °C and its kinetics. Food waste was considered as co-substrate due to its ease of digestion. Batch experiments were conducted using CH/WH/FW ratios (100:0:0, 0:100:0, 35:35:30, 30:30:40, 25:25:50, 20:20:60, and 0:0:100 w/w) with total solids (TS) content of about 9.5% (w/v). The results indicated that the addition of FW significantly enhanced WH and CH digestion performance, with the maximum biogas yield of 572.60 <span>(pm)</span> 2.30 mL/gVS, best synergistic effect of 1.5, highest biodegradability of 89.22%, and a biodegradation rate of 57.82% obtained at a mix ratio of 25:25:50, which was improved by 179.71% compared to CH mono-digestion. In addition, the organic conversion efficiency of TS and volatile solids reached 69.86 and 81.48%, respectively. Conversely, CH mono-digestion yielded the lowest biogas yield of 204.71 ± 10.74 mL/g VS, highlighting its unfeasibility. The modified logistic equation showed the best fit to the experimental data. The optimum CH/WH/FW ratio of 25:25:50 demonstrated the highest biogas yield and methane content at 66.30 ± 0.76%.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1953 - 1970"},"PeriodicalIF":3.1,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Idzumi Okajima, Masato Muto, Shingo Morimoto, Kazuki Nauchi, Yuta Kodama, Enoch Y. Park, Takeshi Sako
{"title":"Bioethanol Production from Paper Sludge by Subcritical Water Pretreatment and Semi-simultaneous Saccharification and Fermentation","authors":"Idzumi Okajima, Masato Muto, Shingo Morimoto, Kazuki Nauchi, Yuta Kodama, Enoch Y. Park, Takeshi Sako","doi":"10.1007/s12155-024-10755-2","DOIUrl":"10.1007/s12155-024-10755-2","url":null,"abstract":"<div><p>Paper sludge (PS) from paper mills has a significant potential for bioethanol production. In this study, waste-paper-containing PS is used as the raw material for bioethanol production because the annual waste paper utilization rate has increased globally. Although PS does not require delignification, the antiseptics and deinking agents in waste paper-containing PS inhibit enzymatic reactions such as saccharification and fermentation. Their removal is important, but it has not yet been reported. Using subcritical water pretreatment, the selective decomposition of enzyme inhibitors in PS is examined without the generation of other enzyme inhibitors. The optimum pretreatment conditions are identified as 240 °C, 3.3 MPa, 3 min, and pH 4.5. Glucose was obtained in 71% yield from pretreated 5 wt% PS using cellulase, which is 5.5 times higher than that from unpretreated PS. This is because the reactivity of the pretreated PS increases with increasing surface area of the cellulose fibers, and the cellulase inhibitors are decomposed by subcritical water. Next, semi-simultaneous saccharification and fermentation treatments are performed to produce bioethanol from waste-paper-containing PS. The bioethanol yield based on cellulose after 96 h is 68% for PS pretreated with subcritical water, whereas the bioethanol yield is 6% for unpretreated PS. Therefore, subcritical water pretreatment increases the bioethanol yield by 11 times. The proposed method may enable the use of large amounts of PS as ethanol feedstock in future.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1662 - 1673"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Anaerobic Digestion Enhancement of Brewery Sludge Assisted by Exogenous Hydrogen","authors":"Shiyue Liu, Xingdi Ma, Sue Yao, Xingyun Zhu, Yongguang Ma, Zhiqiang Chen, Jiyan Liang","doi":"10.1007/s12155-024-10758-z","DOIUrl":"10.1007/s12155-024-10758-z","url":null,"abstract":"<div><p>The purification of biogas as a product of anaerobic digestion has gradually become a research focus. In situ hydrogen-assisted biogas purification is an effective way to enhance the reaction rate, but the solubility and mass transfer efficiency of hydrogen are the difficulties that constrain the technology. Thus, four continuous hydrogen injection modes M1: 1 mL/min, M2: 2 mL/min, M3: 5 mL/min, and M4: 10 mL/min and two intermittent hydrogen injection modes A: 4 mL/min ( interval 20 min ) and B: 6 mL/min ( interval 40 min ) were designed to explore the effect of different hydrogen injection modes on in situ biogas upgrading of upflow anaerobic sludge bed (UASB) in the research. The results showed that the methane production showed a trend of increasing first and then decreasing in continuous hydrogenation experiment. The CH<sub>4</sub> production reached its peak at 86.2% in the M2 stage. In the two batch hydrogenation tests, group A showed better hydrogenation effect with a CH<sub>4</sub> production of about 92%, which was 4% higher than that of group B. The hydrogenotrophic methanogens (HMs) in group A archaea community were more effectively enriched, with an abundance of 52.83% of <i>Methanobacterium</i>. The results illustrate that proper hydrogen injection can enhance anaerobic digestion and promote biogas purification, and the effect of short-term intermittent hydrogen injection is more significant.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1943 - 1952"},"PeriodicalIF":3.1,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140627424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luana R. R. Fröner-Lacerda, Vinícius F. Lacerda, Larissa C. Ampese, Henrique D. D. Ziero, Montserrat Pérez, Tânia Forster-Carneiro
{"title":"The Assessment of the Operational Performance of a Dry Anaerobic Reactor of Cambuci Husks to Bioenergy Potential and Biorefinery Integration","authors":"Luana R. R. Fröner-Lacerda, Vinícius F. Lacerda, Larissa C. Ampese, Henrique D. D. Ziero, Montserrat Pérez, Tânia Forster-Carneiro","doi":"10.1007/s12155-024-10759-y","DOIUrl":"10.1007/s12155-024-10759-y","url":null,"abstract":"<div><p>Anaerobic digestion plays a significant role in obtaining renewable energy through biogas production, reducing greenhouse gas emissions, helping with waste management, and bringing economic and social benefits. This work aims to examine approaches for the treatment and use of cambuci bagasse, identifying typical problems and proposing solutions concerning the application of the technique, control of operational parameters, management in dry regime conditions, optimization of efficiency, and increased productivity, using anaerobic digestion as a fundamental and central technology. The results showed the potential of electric energy and heat that could be generated by burning the biomass in a CHP system. Also, they presented the respective avoided greenhouse gas emissions in situations where biogas is applied to replace conventional heat or electricity sources. The biogas average production ratio was 102.69 m³/ton of cambuci by-product with a methane composition of around 60% in the 24th to 30th days. The experimental data obtained was subjected to calculations that indicate an electric generation of 202.98 kWh/ton of cambuci biomass and heat generation of 913.40 MJ/ton of cambuci biomass. In this theoretical scenario, for each ton of cambuci, it is possible to produce 913.4 MJ of thermal energy and 202.98 kWh of electric energy, considering the biogas burning into a CHP system. In the analysis of types of substrates regarding growth capacity, it was concluded that the substrate with a 30% dilution of the digested end was the one that showed the best growth of the cultivar’s stem, obtaining a CEC of 9.1516 mol/g.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1375 - 1385"},"PeriodicalIF":3.1,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}