Mohammad Niroobakhsh, Yixia Xie, Sarah L Dallas, David Moore, Mark L Johnson, Thiagarajan Ganesh
{"title":"Analysis and Imaging of Osteocytes.","authors":"Mohammad Niroobakhsh, Yixia Xie, Sarah L Dallas, David Moore, Mark L Johnson, Thiagarajan Ganesh","doi":"10.3791/64699","DOIUrl":"https://doi.org/10.3791/64699","url":null,"abstract":"<p><p>Osteocytes are the bone cells that are thought to respond to mechanical strains and fluid flow shear stress (FFSS) by activating various biological pathways in a process known as mechanotransduction. Confocal image-derived models of osteocyte networks are a valuable tool for conducting Computational Fluid Dynamics (CFD) analysis to evaluate shear stresses on the osteocyte membrane, which cannot be determined by direct measurement. Computational modeling using these high-resolution images of the microstructural architecture of bone was used to numerically simulate the mechanical loading exerted on bone and understand the load-induced stimulation of osteocytes. This study elaborates on the methods to develop 3D single osteocyte models using confocal microscope images of the Lacunar-Canalicular Network (LCN) to perform CFD analysis utilizing various computational modeling software. Prior to confocal microscopy, the mouse bones are sectioned and stained with Fluorescein isothiocyanate (FITC) dye to label the LCN. At 100x resolution, Z-stack images are collected using a confocal microscope and imported into MIMICS software (3D image-based processing software) to construct a surface model of the LCN and osteocyte-dendritic processes. These surfaces are then subtracted using a Boolean operation in 3-Matic software (3D data optimization software) to model the lacunar fluidic space around the osteocyte cell body and canalicular space around the dendrites containing lacunocanalicular fluid. 3D volumetric fluid geometry is imported into ANSYS software (simulation software) for CFD analysis. ANSYS CFX (CFD software) is used to apply physiological loading on the bone as fluid pressure, and the wall shear stresses on the osteocytes and dendritic processes are determined. The morphology of the LCN affects the shear stress values sensed by the osteocyte cell membrane and cell processes. Therefore, the details of how confocal image-based models are developed can be valuable in understanding osteocyte mechanosensation and can lay the groundwork for future studies in this area.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822740","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Amy N Stahl, Elisabeth Artis, Purnima Ghose, Tonia S Rex
{"title":"System for Focal, Closed-System Central Nervous System Injury.","authors":"Amy N Stahl, Elisabeth Artis, Purnima Ghose, Tonia S Rex","doi":"10.3791/66948","DOIUrl":"https://doi.org/10.3791/66948","url":null,"abstract":"<p><p>The prevalence of closed-system central nervous system (CNS) injuries underscores the need for an enhanced understanding of these traumas to improve protective and therapeutic interventions. Crucial to this research are animal models that replicate closed-system CNS injuries. In this context, a custom overpressure air system was engineered to reproduce a range of closed-system CNS injuries in murine models, including ocular, brain, and spinal cord trauma. To date, the system has been used to administer eye-, head-, or spine-directed overpressure air to model anteroposterior pole injury in the eye, indirect traumatic optic neuropathy (ITON), focal traumatic brain injury, and spinal cord injury. This paper provides a detailed protocol outlining the system's design and operation and shares representative results demonstrating its effectiveness. The robust framework presented here provides a strong foundation for ongoing research in CNS trauma. By leveraging the system's flexible attributes, investigators can modify and carefully control the location, severity, and timing of injuries. This allows for comprehensive comparisons of molecular mechanisms and therapeutic efficacy across multiple closed-system CNS injuries.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daria Ivanova, Ricky Siu, Mehraein Roointan, Saswat Sahoo, Tom Enbar, Jessica Livingston, Maryam Faiz, Cindi M Morshead
{"title":"AAV Systems and Mouse Models for Investigating Ectopic Expression of Neurod1 in Transduced Cells at Subacute and Chronic Times Post-Ischemic Stroke.","authors":"Daria Ivanova, Ricky Siu, Mehraein Roointan, Saswat Sahoo, Tom Enbar, Jessica Livingston, Maryam Faiz, Cindi M Morshead","doi":"10.3791/66965","DOIUrl":"https://doi.org/10.3791/66965","url":null,"abstract":"<p><p>Ectopic expression of neurogenic factors in vivo has emerged as a promising approach for replacing lost neurons in disease models. The use of neural basic helix-loop-helix (bHLH) transcription factors via non-propagating virus-like particle systems, including retrovirus, lentivirus, and adeno-associated virus (AAV), has been extensively reported. For in vivo experiments, AAVs are increasingly used due to their low pathogenicity and potential for translatability. This protocol describes two AAV systems for investigating the ectopic expression of transcription factors in transduced cells post-ischemic stroke. In both systems, Neurod1 expression is controlled by the short GFAP (gfaABC(1)D) promoter, which is upregulated in reactive astrocytes post-stroke as well as in endogenous neurons when combined with neurogenic factor expression. In the ischemic stroke model described, focal ischemia is induced by injecting endothelin-1 (ET-1) into the motor cortex of mice, creating a lesion surrounded by reactive GFAP-expressing astrocytes and surviving neurons. Intracerebral injections of AAV are performed to ectopically induce the expression of Neurod1 in the subacute (7 days) and chronic (21 days) phases post-stroke. Within weeks following AAV injection, a significantly higher number of neurons among transduced cells are identified in mice ectopically expressing Neurod1 compared to mice receiving AAV control viruses. The AAV-based strategies used replicated observed outcomes of increased numbers of neurons expressing the reporter gene in a model of mild-to-moderate cortical stroke. This protocol establishes a standard platform for exploring the effects of ectopic expression of transcription factors delivered with AAV-based systems, contributing to the understanding of neurogenic factor expression in the context of stroke.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Procoagulant Platelet Characterization by Measuring Phosphatidylserine Exposure and Microvesicle Release from Human Purified Platelets.","authors":"Mathieu Fiore, Alexandre Guy, Chloé James","doi":"10.3791/67042","DOIUrl":"https://doi.org/10.3791/67042","url":null,"abstract":"<p><p>Activated platelets promote coagulation primarily by exposing the procoagulant phospholipid phosphatidylserine (PS) on their outer membrane surfaces and releasing PS-expressing microvesicles that retain the original membrane architecture and cytoplasmic components of their originating cells. The accessibility of phosphatidylserine facilitates the binding of major coagulation factors, significantly amplifying the catalytic efficiency of coagulation enzymes, while microvesicle release acts as a pivotal mediator of intercellular signaling. Procoagulant platelets play a crucial role in clot stabilization during hemostasis, and their increased proportion in the bloodstream correlates with an increased risk of thrombosis. It has also been shown that platelet microvesicles are rich in growth factors that promote wound healing and inflammatory modulation. Analyzing phosphatidylserine exposure and microvesicle release using flow cytometry poses significant challenges due to their small size and the limited number of positive events for markers of interest. Despite considerable advances in the last decade, methods for assessing phosphatidylserine exposure and microvesicle release remain a work in progress. Unfortunately, no single universally applicable protocol exists, and several factors must be evaluated to determine the most appropriate methodology for each specific application. Here, we describe a detailed protocol for isolating washed platelets from human blood, followed by collagen and/or thrombin activation, to measure the exposure of phosphatidylserine and microvesicle release that characterize procoagulant platelets. This protocol is designed to facilitate the initial preparation of platelet-rich plasma and the isolation of washed platelets. Finally, phosphatidylserine exposure and microvesicle release are quantified by flow cytometry, enabling the identification of procoagulant platelets.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Karyotype Analysis of Lycoris aurea Herb Populations Using Fluorochrome Banding and 45S and 5S rDNA-FISH.","authors":"Xianghui Jiang, Miaohua Quan, Chaowen She","doi":"10.3791/67363","DOIUrl":"https://doi.org/10.3791/67363","url":null,"abstract":"<p><p>To understand karyotype variation in eight populations, detailed karyotypes were meticulously established using chromosomal measurements, fluorescence bands, and rDNA FISH signals. The number of 45S rDNA sites varies from one to five pairs per population, with the most common number per karyotype being four pairs. The 45S rDNA locus is predominantly located in the short arms and terminal regions of chromosomes, while the 5S rDNA locus is found mainly in the short arm and the terminal or proximal regions. Populations HBWF, HNXN, HBBD, and HNZX showed a similar distribution of 45S rDNA sites, as did GXTL, HBFC, and SCLS, indicating a close relationship between populations with similar 45S rDNA site distributions. The karyotypes of all studied populations are symmetrical, comprising stable and metastable centromeres or exclusively stable centromeres. Scatter plots of MCA and CVCL effectively distinguish their karyotypic structures. The analysis includes six quantitative parameters (x, 2n, TCL, MCA, CVCL, CVCI). Additionally, the results indicate that PCoA based on these six parameters is a robust method for determining biological karyotype relationships among the eight populations. The chromosome number in Lycoris populations is x = 6-8. Based on the current study and literature, genomic differentiation of these populations is discussed in terms of genome size, heterochromatin, 45S and 5S rDNA sites, and karyotype asymmetry.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas S Andresen, Hakim Hiel, Catherine J Graham, Yassine Balhi, John P Carey, Amanda M Lauer, Bryan K Ward
{"title":"Harvest of Vestibular End-Organs under Physiologic Conditions during Labyrinthectomy.","authors":"Nicholas S Andresen, Hakim Hiel, Catherine J Graham, Yassine Balhi, John P Carey, Amanda M Lauer, Bryan K Ward","doi":"10.3791/67523","DOIUrl":"https://doi.org/10.3791/67523","url":null,"abstract":"<p><p>The living human inner ear is challenging to study because it is encased within dense otic capsule bone that limits access to biological tissue. Traditional temporal bone histopathology methods rely on lengthy, expensive decalcification protocols that take 9-10 months and reduce the types of tissue analysis possible due to RNA degradation. There is a critical need to develop methods to access fresh human inner ear tissue to better understand otologic diseases, such as Ménière's disease, at the cellular and molecular level. This paper describes a technique for the harvest of human vestibular end organs from a living donor under physiologic conditions. An individual with Ménière's disease and 'drops attacks' that were refractory to intratympanic gentamicin injection underwent labyrinthectomy. A traditional mastoidectomy was first performed, and the horizontal and superior semicircular canals (SCC) were identified. The mastoid cavity was filled with a balanced salt solution so that the labyrinth could be opened under more physiologic conditions to preserve cellular integrity. A zero-degree endoscope fit with a lens-cleaning sheath irrigation system was used to visualize the submerged mastoid cavity, and a 2 mm diamond burr was used to skeletonize and open the horizontal and superior SCCs, followed by the vestibule. The ampullae and portion of the canal ducts for the superior and lateral SCCs were harvested. The utricle was similarly harvested. Harvested tissue was immediately placed in an ice-cold buffer and then fixed for one hour in 4% paraformaldehyde in phosphate-buffered saline (PBS). The tissue was rinsed several times in 1x PBS and stored for 48 h at 4 °C. The tissue samples underwent immunostaining with a combination of primary antibodies against tenascin-C (Calyx), oncomodulin (streolar hair cells), calretinin (Calyx and Type II hair cells), synaptic vesicle protein 2 (efferent fibers and boutons), β-tubulin 1 (Calyx and afferent boutons), followed by incubation with fluorophore-conjugated secondary antibodies. The tissue samples were then rinsed and mounted for confocal microscopy examination. Images revealed the presence of ampullar and macular hair cells and neural structures. This protocol demonstrates that it is possible to harvest intact, high-quality human inner ear tissue from living donors and may provide an important tool for the study of otologic disease.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anastasia M W Cooper, Kaitlin Pfeiffer, Kathryn Reif, Kristopher Silver, Dana Mitzel
{"title":"AC-DC Electropenetrography for the Study of Probing and Ingestion Behaviors of Culex tarsalis Mosquitoes on Human Hands.","authors":"Anastasia M W Cooper, Kaitlin Pfeiffer, Kathryn Reif, Kristopher Silver, Dana Mitzel","doi":"10.3791/66877","DOIUrl":"https://doi.org/10.3791/66877","url":null,"abstract":"<p><p>Mosquitoes transmit pathogens that negatively affect human and animal health. A greater understanding of their blood-feeding biology and interactions with hosts and pathogens could be exploited to develop new targets for controlling mosquito-borne diseases. Unfortunately, probing (i.e., biting) behaviors of mosquitoes are poorly understood because they occur inside host tissues. Here, a non-invasive procedure is described for using AC-DC electropenetrography (EPG) to indirectly visualize and quantify mosquito feeding behaviors by recording changes in electrical signals generated when probing and ingesting on human hands. Thin gold wires are attached to the mosquitoes using conductive silver glue and connected to the EPG instrument. The human host holds a substrate voltage probe in their hand. Probing of the host by the wired mosquito completes the electrical circuit, and electrical signals are recorded on a computer as \"waveforms\" that can then be measured and enumerated for analysis. This methodology has been used to characterize the probing and ingestion behaviors of Aedes aegypti and Culex tarsalis mosquitoes and can be applied to other mosquito species. EPG can be used to study the effects of pathogens, insecticides, and other factors on mosquito feeding behaviors.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hudson C Kussie, Jonathan P Yasmeh, Brodi Stevens, Katharina S Fischer, Maia B Granoski, Eamonn McKenna, Maria Gracia Mora Pinos, Fidel Saenz, Maisam Jafri, Andrew C Hostler, Kellen Chen, Geoffrey C Gurtner
{"title":"A Mouse Model of Mechanotransduction-driven, Human-like Hypertrophic Scarring.","authors":"Hudson C Kussie, Jonathan P Yasmeh, Brodi Stevens, Katharina S Fischer, Maia B Granoski, Eamonn McKenna, Maria Gracia Mora Pinos, Fidel Saenz, Maisam Jafri, Andrew C Hostler, Kellen Chen, Geoffrey C Gurtner","doi":"10.3791/67156","DOIUrl":"https://doi.org/10.3791/67156","url":null,"abstract":"<p><p>Hypertrophic scarring (HTS) is an abnormal process of wound healing that results in excessive scar tissue formation. Over the past decade, we have demonstrated that mechanotransduction-the conversion of mechanical stimuli into cellular responses-drives excessive fibrotic scar healing. A mouse model to assess human-like hypertrophic scarring would be an essential tool for examining various therapeutics and their ability to reduce scarring and improve healing. Specifically, our laboratory has developed a murine wound model that increases mechanical strain to promote human-like HTS. This protocol utilizes biomechanical loading devices, made from modified 13 mm palatal expanders, whose arms are placed on either side of the incision and distracted incrementally apart in order to apply continuous tension across the wound bed during healing. Over nearly two decades of use, this model has been significantly advanced to improve efficacy and reproducibility. Using the murine HTS model, significant dermal fibrotic scars can be induced to be histologically comparable to human hypertrophic scars. This murine model provides an environment to develop biologics involved in the treatment of HTS and mechanotransduction-related conditions such as foreign body response.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua C Colvin, Donald Sorrells, J Steven Alexander
{"title":"Validation of Therapeutic Agent Conjugation to Polyvinyl Alcohol-Coated Medical Devices.","authors":"Joshua C Colvin, Donald Sorrells, J Steven Alexander","doi":"10.3791/67358","DOIUrl":"https://doi.org/10.3791/67358","url":null,"abstract":"<p><p>Protein-based therapeutics are often limited by their route of administration and inability to confine them to their site of action. One innovative approach we have developed is to covalently bind protein therapeutics to medical devices, allowing more localized and highly concentrated delivery of these agents to their intended site of action. This study aims to evaluate if glucagon-like peptide-2 (GLP-2) can be covalently bound to the vaginal expansion sleeve (VES) and intestinal expansion sleeve (IES) devices in clinically relevant and measurable quantities. Expansion sleeves were coated with polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde/sulfuric acid vapor to create a chemically active surface capable of binding amine-containing therapeutics such as GLP-2. A standard curve was created by binding 250 µg, 100 µg, 50 µg, 25 µg, and 0 µg of GLP-2 to PVA-coated wells of a 24-well plate. An ELISA standard was created using a rabbit anti-GLP-2 antibody followed by a goat anti-rabbit IgG alkaline phosphatase secondary antibody plus an alkaline phosphatase blue microwell substrate. Colorimetry (yellow to blue at 620 nm) was proportional to the concentration of GLP-2 bound antibodies, enabling calculation of the bound concentration of GLP-2 on the PVA-coated sleeves. The addition of 50 µg of GLP-2 to IES/VES devices bound an average of 22.69 ± 9.32 µg/cm<sup>2</sup> of GLP-2 with an external IES/VES surface area (9.425 cm<sup>2</sup>), indicating that 44% of added GLP-2 was immobilized on the PVA coated IES/VES sleeves. Current human GLP-2 dosing is 50 µg/Kg. Because each sleeve carries 22 µg, this is approximately 44% of a systemic dose in a single device. This methodology makes it possible to add dramatically lower doses of therapeutic agents to get the same effect as systemic administration of the GLP-2 drug while also avoiding systemic effects.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlotte U Zajc, Elise Sylvander, Magdalena Teufl, Michael W Traxlmayr
{"title":"Protein Engineering by Yeast Surface Display.","authors":"Charlotte U Zajc, Elise Sylvander, Magdalena Teufl, Michael W Traxlmayr","doi":"10.3791/66994","DOIUrl":"https://doi.org/10.3791/66994","url":null,"abstract":"<p><p>Protein engineering enables the improvement of existing functions of a given protein or the generation of novel functions. One of the most widely used and versatile tools in the protein engineering field is yeast surface display, where a pool of randomized proteins is expressed on the surface of yeast. The linkage of phenotype (e.g., binding of the yeast-displayed protein to the antigen of interest) and genotype (the plasmid encoding for the protein variant) enables selection of this library for desired properties and subsequent sequencing of enriched variants. By combining magnetic bead selection with flow cytometric sorting, protein variants with enhanced binding to a target antigen can be selected and enriched. Notably, in addition to affinity maturation, binding to a target can also be achieved without any initial binding affinity. Here, we provide a step-by-step protocol that covers all essential parts of a yeast surface display selection campaign and gives examples of typical yeast surface display results. We demonstrate that yeast surface display is a broadly applicable and robust method that can be established in any molecular biology laboratory with access to flow cytometry.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 213","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}