Michael Ippolito, Charlie Maddox, Amal Inam, Mathieu E Wimmer, Sara Jane Ward
{"title":"大麻二酚对化疗诱导的周围神经病变大鼠模型异常性痛和痛觉过敏的预防作用。","authors":"Michael Ippolito, Charlie Maddox, Amal Inam, Mathieu E Wimmer, Sara Jane Ward","doi":"10.3791/68079","DOIUrl":null,"url":null,"abstract":"<p><p>This study demonstrates the utility of a rat model of chemotherapy-induced peripheral neuropathy (CIPN) to assess the ability of the non-psychoactive cannabinoid cannabidiol (CBD) to modulate the development of this syndrome in vivo. The method utilizes the chemotherapeutic agent paclitaxel to generate an allodynic phenotype in the animals. This study describes how to handle and solubilize CBD, administer the chemotherapeutic agent, assess mechanical and cold sensitivity, and apply high-speed videography to measure nocifensive behavior in animals. Using the procedures outlined, the data support that CBD prevents the allodynic phenotype from developing in the treated animals. No difference was observed in the CBD-treated animals from day 0 (pre-paclitaxel baseline) to day 7 (post-sensitization) in mechanical or thermal sensitivity, while the vehicle-treated animals became significantly more sensitive. This response to treatment is durable up to the latest time point where data were collected (7 weeks). The addition of high-speed videography allows for a more granular and unbiased assessment of this behavioral phenotype (e.g., classification of analgesia and anti-allodynia). This demonstrates both the utility of this model for cannabinoid drug characterization and the potential role of CBD in mitigating neuropathic pain.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 220","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prevention of Allodynia and Hyperalgesia by Cannabidiol in a Rat Model of Chemotherapy-Induced Peripheral Neuropathy.\",\"authors\":\"Michael Ippolito, Charlie Maddox, Amal Inam, Mathieu E Wimmer, Sara Jane Ward\",\"doi\":\"10.3791/68079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study demonstrates the utility of a rat model of chemotherapy-induced peripheral neuropathy (CIPN) to assess the ability of the non-psychoactive cannabinoid cannabidiol (CBD) to modulate the development of this syndrome in vivo. The method utilizes the chemotherapeutic agent paclitaxel to generate an allodynic phenotype in the animals. This study describes how to handle and solubilize CBD, administer the chemotherapeutic agent, assess mechanical and cold sensitivity, and apply high-speed videography to measure nocifensive behavior in animals. Using the procedures outlined, the data support that CBD prevents the allodynic phenotype from developing in the treated animals. No difference was observed in the CBD-treated animals from day 0 (pre-paclitaxel baseline) to day 7 (post-sensitization) in mechanical or thermal sensitivity, while the vehicle-treated animals became significantly more sensitive. This response to treatment is durable up to the latest time point where data were collected (7 weeks). The addition of high-speed videography allows for a more granular and unbiased assessment of this behavioral phenotype (e.g., classification of analgesia and anti-allodynia). This demonstrates both the utility of this model for cannabinoid drug characterization and the potential role of CBD in mitigating neuropathic pain.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 220\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/68079\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/68079","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Prevention of Allodynia and Hyperalgesia by Cannabidiol in a Rat Model of Chemotherapy-Induced Peripheral Neuropathy.
This study demonstrates the utility of a rat model of chemotherapy-induced peripheral neuropathy (CIPN) to assess the ability of the non-psychoactive cannabinoid cannabidiol (CBD) to modulate the development of this syndrome in vivo. The method utilizes the chemotherapeutic agent paclitaxel to generate an allodynic phenotype in the animals. This study describes how to handle and solubilize CBD, administer the chemotherapeutic agent, assess mechanical and cold sensitivity, and apply high-speed videography to measure nocifensive behavior in animals. Using the procedures outlined, the data support that CBD prevents the allodynic phenotype from developing in the treated animals. No difference was observed in the CBD-treated animals from day 0 (pre-paclitaxel baseline) to day 7 (post-sensitization) in mechanical or thermal sensitivity, while the vehicle-treated animals became significantly more sensitive. This response to treatment is durable up to the latest time point where data were collected (7 weeks). The addition of high-speed videography allows for a more granular and unbiased assessment of this behavioral phenotype (e.g., classification of analgesia and anti-allodynia). This demonstrates both the utility of this model for cannabinoid drug characterization and the potential role of CBD in mitigating neuropathic pain.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.