Andreas E Voloudakis, Athanasios Kaldis, Basavaprabhu L Patil
{"title":"RNA-Based Vaccination of Plants for Control of Viruses.","authors":"Andreas E Voloudakis, Athanasios Kaldis, Basavaprabhu L Patil","doi":"10.1146/annurev-virology-091919-073708","DOIUrl":"https://doi.org/10.1146/annurev-virology-091919-073708","url":null,"abstract":"<p><p>Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"521-548"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40383120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hannah M Strobel, Elizabeth C Stuart, Justin R Meyer
{"title":"A Trait-Based Approach to Predicting Viral Host-Range Evolvability.","authors":"Hannah M Strobel, Elizabeth C Stuart, Justin R Meyer","doi":"10.1146/annurev-virology-091919-092003","DOIUrl":"https://doi.org/10.1146/annurev-virology-091919-092003","url":null,"abstract":"<p><p>Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"139-156"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40383121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual Review of VirologyPub Date : 2022-09-29Epub Date: 2022-06-07DOI: 10.1146/annurev-virology-092920-030354
Cody J Warren, Mario L Santiago, Dohun Pyeon
{"title":"APOBEC3: Friend or Foe in Human Papillomavirus Infection and Oncogenesis?","authors":"Cody J Warren, Mario L Santiago, Dohun Pyeon","doi":"10.1146/annurev-virology-092920-030354","DOIUrl":"10.1146/annurev-virology-092920-030354","url":null,"abstract":"<p><p>Human papillomavirus (HPV) infection is a causative agent of multiple human cancers, including cervical and head and neck cancers. In these HPV-positive tumors, somatic mutations are caused by aberrant activation of DNA mutators such as members of the apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) family of cytidine deaminases. APOBEC3 proteins are most notable for their restriction of various viruses, including anti-HPV activity. However, the potential role of APOBEC3 proteins in HPV-induced cancer progression has recently garnered significant attention. Ongoing research stems from the observations that elevated APOBEC3 expression is driven by HPV oncogene expression and that APOBEC3 activity is likely a significant contributor to somatic mutagenesis in HPV-positive cancers. This review focuses on recent advances in the study of APOBEC3 proteins and their roles in HPV infection and HPV-driven oncogenesis. Further, we discuss critical gaps and unanswered questions in our understanding of APOBEC3 in virus-associated cancers.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"375-395"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637027/pdf/nihms-1845347.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41180317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Priya S Shah, Nitin S Beesabathuni, Adam T Fishburn, Matthew W Kenaston, Shiaki A Minami, Oanh H Pham, Inglis Tucker
{"title":"Systems Biology of Virus-Host Protein Interactions: From Hypothesis Generation to Mechanisms of Replication and Pathogenesis.","authors":"Priya S Shah, Nitin S Beesabathuni, Adam T Fishburn, Matthew W Kenaston, Shiaki A Minami, Oanh H Pham, Inglis Tucker","doi":"10.1146/annurev-virology-100520-011851","DOIUrl":"https://doi.org/10.1146/annurev-virology-100520-011851","url":null,"abstract":"<p><p>As obligate intracellular parasites, all viruses must co-opt cellular machinery to facilitate their own replication. Viruses often co-opt these cellular pathways and processes through physical interactions between viral and host proteins. In addition to facilitating fundamental aspects of virus replication cycles, these virus-host protein interactions can also disrupt physiological functions of host proteins, causing disease that can be advantageous to the virus or simply a coincidence. Consequently, unraveling virus-host protein interactions can serve as a window into molecular mechanisms of virus replication and pathogenesis. Identifying virus-host protein interactions using unbiased systems biology approaches provides an avenue for hypothesis generation. This review highlights common systems biology approaches for identification of virus-host protein interactions and the mechanistic insights revealed by these methods. We also review conceptual innovations using comparative and integrative systems biology that can leverage global virus-host protein interaction data sets to more rapidly move from hypothesis generation to mechanism.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"397-415"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150767/pdf/nihms-1891242.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9379720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual Review of VirologyPub Date : 2022-09-29Epub Date: 2022-06-15DOI: 10.1146/annurev-virology-100220-010653
Xintao Hu, Hsuan-Yuan Wang, Claire E Otero, Jennifer A Jenks, Sallie R Permar
{"title":"Lessons from Acquired Natural Immunity and Clinical Trials to Inform Next-Generation Human Cytomegalovirus Vaccine Development.","authors":"Xintao Hu, Hsuan-Yuan Wang, Claire E Otero, Jennifer A Jenks, Sallie R Permar","doi":"10.1146/annurev-virology-100220-010653","DOIUrl":"10.1146/annurev-virology-100220-010653","url":null,"abstract":"<p><p>Human cytomegalovirus (HCMV) infection, the most common cause of congenital disease globally, affecting an estimated 1 million newborns annually, can result in lifelong sequelae in infants, such as sensorineural hearing loss and brain damage. HCMV infection also leads to a significant disease burden in immunocompromised individuals. Hence, an effective HCMV vaccine is urgently needed to prevent infection and HCMV-associated diseases. Unfortunately, despite more than five decades of vaccine development, no successful HCMV vaccine is available. This review summarizes what we have learned from acquired natural immunity, including innate and adaptive immunity; the successes and failures of HCMV vaccine human clinical trials; the progress in related animal models; and the analysis of protective immune responses during natural infection and vaccination settings. Finally, we propose novel vaccine strategies that will harness the knowledge of protective immunity and employ new technology and vaccine concepts to inform next-generation HCMV vaccine development.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"491-520"},"PeriodicalIF":8.1,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10154983/pdf/nihms-1892870.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9457783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David M Knipe, Amy Prichard, Surendra Sharma, Joe Pogliano
{"title":"Replication Compartments of Eukaryotic and Bacterial DNA Viruses: Common Themes Between Different Domains of Host Cells.","authors":"David M Knipe, Amy Prichard, Surendra Sharma, Joe Pogliano","doi":"10.1146/annurev-virology-012822-125828","DOIUrl":"10.1146/annurev-virology-012822-125828","url":null,"abstract":"<p><p>Subcellular organization is essential for life. Cells organize their functions into organelles to concentrate their machinery and supplies for optimal efficiency. Likewise, viruses organize their replication machinery into compartments or factories within their host cells for optimal replicative efficiency. In this review, we discuss how DNA viruses that infect both eukaryotic cells and bacteria assemble replication compartments for synthesis of progeny viral DNA and transcription of the viral genome. Eukaryotic DNA viruses assemble replication compartments in the nucleus of the host cell while DNA bacteriophages assemble compartments called phage nuclei in the bacterial cytoplasm. Thus, DNA viruses infecting host cells from different domains of life share common replication strategies.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"307-327"},"PeriodicalIF":8.1,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311714/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9740280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual Review of VirologyPub Date : 2022-09-29Epub Date: 2022-06-07DOI: 10.1146/annurev-virology-100120-012345
Léa Gaucherand, Marta Maria Gaglia
{"title":"The Role of Viral RNA Degrading Factors in Shutoff of Host Gene Expression.","authors":"Léa Gaucherand, Marta Maria Gaglia","doi":"10.1146/annurev-virology-100120-012345","DOIUrl":"https://doi.org/10.1146/annurev-virology-100120-012345","url":null,"abstract":"<p><p>Many viruses induce shutoff of host gene expression (host shutoff) as a strategy to take over cellular machinery and evade host immunity. Without host shutoff activity, these viruses generally replicate poorly in vivo, attesting to the importance of this antiviral strategy. In this review, we discuss one particularly advantageous way for viruses to induce host shutoff: triggering widespread host messenger RNA (mRNA) decay. Viruses can trigger increased mRNA destruction either directly, by encoding RNA cleaving or decapping enzymes, or indirectly, by activating cellular RNA degradation pathways. We review what is known about the mechanism of action of several viral RNA degradation factors. We then discuss the consequences of widespread RNA degradation on host gene expression and on the mechanisms of immune evasion, highlighting open questions. Answering these questions is critical to understanding how viral RNA degradation factors regulate host gene expression and how this process helps viruses evade host responses and replicate.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"213-238"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9530000/pdf/nihms-1819195.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41178957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Understanding Neuropathogenesis of Rift Valley Fever Virus.","authors":"Kaleigh A Connors, Amy L Hartman","doi":"10.1146/annurev-virology-091919-065806","DOIUrl":"https://doi.org/10.1146/annurev-virology-091919-065806","url":null,"abstract":"Rift Valley fever virus (RVFV) is an emerging arboviral pathogen that causes disease in both livestock and humans. Severe disease manifestations of Rift Valley fever (RVF) in humans include hemorrhagic fever, ocular disease, and encephalitis. This review describes the current understanding of the pathogenesis of RVF encephalitis. While some data from human studies exist, the development of several animal models has accelerated studies of the neuropathogenesis of RVFV. We review current animal models and discuss what they have taught us about RVFV encephalitis. We briefly describe alternative models that have been used to study other neurotropic arboviruses and how these models may help contribute to our understanding RVFV encephalitis. We conclude with some unanswered questions and future directions.","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"437-450"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10316117/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10117614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victória Fulgêncio Queiroz, Rodrigo Araújo Lima Rodrigues, Paulo Victor de Miranda Boratto, Bernard La Scola, Julien Andreani, Jônatas Santos Abrahão
{"title":"Amoebae: Hiding in Plain Sight: Unappreciated Hosts for the Very Large Viruses.","authors":"Victória Fulgêncio Queiroz, Rodrigo Araújo Lima Rodrigues, Paulo Victor de Miranda Boratto, Bernard La Scola, Julien Andreani, Jônatas Santos Abrahão","doi":"10.1146/annurev-virology-100520-125832","DOIUrl":"https://doi.org/10.1146/annurev-virology-100520-125832","url":null,"abstract":"<p><p>For decades, viruses have been isolated primarily from humans and other organisms. Interestingly, one of the most complex sides of the virosphere was discovered using free-living amoebae as hosts. The discovery of giant viruses in the early twenty-first century opened a new chapter in the field of virology. Giant viruses are included in the phylum <i>Nucleocytoviricota</i> and harbor large and complex DNA genomes (up to 2.7 Mb) encoding genes never before seen in the virosphere and presenting gigantic particles (up to 1.5 μm). Different amoebae have been used to isolate and characterize a plethora of new viruses with exciting details about novel viral biology. Through distinct isolation techniques and metagenomics, the diversity and complexity of giant viruses have astonished the scientific community. Here, we discuss the latest findings on amoeba viruses and how using these single-celled organisms as hosts has revealed entities that have remained hidden in plain sight for ages.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"79-98"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10400534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cyclic Nucleotide Signaling in Phage Defense and Counter-Defense.","authors":"Januka S Athukoralage, Malcolm F White","doi":"10.1146/annurev-virology-100120-010228","DOIUrl":"https://doi.org/10.1146/annurev-virology-100120-010228","url":null,"abstract":"<p><p>Advances in our understanding of prokaryotic antiphage defense mechanisms in the past few years have revealed a multitude of new cyclic nucleotide signaling molecules that play a crucial role in switching infected cells into an antiviral state. Defense pathways including type III CRISPR (clustered regularly interspaced palindromic repeats), CBASS (cyclic nucleotide-based antiphage signaling system), PYCSAR (pyrimidine cyclase system for antiphage resistance), and Thoeris all use cyclic nucleotides as second messengers to activate a diverse range of effector proteins. These effectors typically degrade or disrupt key cellular components such as nucleic acids, membranes, or metabolites, slowing down viral replication kinetics at great cost to the infected cell. Mechanisms to manipulate the levels of cyclic nucleotides are employed by cells to regulate defense pathways and by viruses to subvert them. Here we review the discovery and mechanism of the key pathways, signaling molecules and effectors, parallels and differences between the systems, open questions, and prospects for future research in this area.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"9 1","pages":"451-468"},"PeriodicalIF":11.3,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10589761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}