Annual Review of Virology最新文献

筛选
英文 中文
Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement. 扩展植物病毒体:类伞状病毒利用宿主蛋白质移动
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-111821-122718
Anne E Simon, Diego F Quito-Avila, Sayanta Bera
{"title":"Expanding the Plant Virome: Umbra-Like Viruses Use Host Proteins for Movement.","authors":"Anne E Simon, Diego F Quito-Avila, Sayanta Bera","doi":"10.1146/annurev-virology-111821-122718","DOIUrl":"10.1146/annurev-virology-111821-122718","url":null,"abstract":"<p><p>Before the very recent discovery of umbra-like viruses (ULVs), the signature defining feature of all plant RNA viruses was the encoding of specialized RNA-binding movement proteins (MPs) for transiting their RNA genomes through gated plasmodesmata to establish systemic infections. The vast majority of ULVs share umbravirus-like RNA-dependent RNA polymerases and 3'-terminal structures, but they differ by not encoding cell-to-cell and long-distance MPs and by not relying on a helper virus for <i>trans</i>-encapsidation and plant-to-plant transmission. The recent finding that two groups of ULVs do not necessarily encode MPs is expanding our understanding of the minimum requirements for modern plant RNA viruses. ULV CY1 from citrus uses host protein PHLOEM PROTEIN 2 (PP2) for systemic movement, and related ULVs encode a capsid protein, thereby providing an explanation for the lack of helper viruses present in many ULV-infected plants. ULVs thus resemble the first viruses that infected plants, which were likely deposited from feeding organisms and would have similarly required the use of host proteins such as PP2 to exit initially infected cells.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"283-308"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface. λ干扰素在母胎界面的抗病毒和免疫调节作用
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-111821-101531
Margaret R Dedloff, Helen M Lazear
{"title":"Antiviral and Immunomodulatory Effects of Interferon Lambda at the Maternal-Fetal Interface.","authors":"Margaret R Dedloff, Helen M Lazear","doi":"10.1146/annurev-virology-111821-101531","DOIUrl":"10.1146/annurev-virology-111821-101531","url":null,"abstract":"<p><p>Interferon lambda (IFN-λ, type III IFN, IL-28/29) is a family of antiviral cytokines that are especially important at barrier sites, including the maternal-fetal interface. Recent discoveries have identified important roles for IFN-λ during pregnancy, particularly in the context of congenital infections. Here, we provide a comprehensive review of the activity of IFN-λ at the maternal-fetal interface, highlighting cell types that produce and respond to IFN-λ in the placenta, decidua, and endometrium. Further, we discuss the role of IFN-λ during infections with congenital pathogens including Zika virus, human cytomegalovirus, rubella virus, and <i>Listeria monocytogenes</i>. We discuss advances in experimental models that can be used to fill important knowledge gaps about IFN-λ-mediated immunity.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"363-379"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity. 拥抱复杂性:新型测序方法对疱疹病毒基因组多样性的启示》(What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity.
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-100422-010336
Alejandro Ortigas-Vasquez, Moriah Szpara
{"title":"Embracing Complexity: What Novel Sequencing Methods Are Teaching Us About Herpesvirus Genomic Diversity.","authors":"Alejandro Ortigas-Vasquez, Moriah Szpara","doi":"10.1146/annurev-virology-100422-010336","DOIUrl":"10.1146/annurev-virology-100422-010336","url":null,"abstract":"<p><p>The arrival of novel sequencing technologies throughout the past two decades has led to a paradigm shift in our understanding of herpesvirus genomic diversity. Previously, herpesviruses were seen as a family of DNA viruses with low genomic diversity. However, a growing body of evidence now suggests that herpesviruses exist as dynamic populations that possess standing variation and evolve at much faster rates than previously assumed. In this review, we explore how strategies such as deep sequencing, long-read sequencing, and haplotype reconstruction are allowing scientists to dissect the genomic composition of herpesvirus populations. We also discuss the challenges that need to be addressed before a detailed picture of herpesvirus diversity can emerge.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"67-87"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141288748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Are There More Human Cancer Viruses Left to Be Found? 是否还有更多人类癌症病毒有待发现?
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 DOI: 10.1146/annurev-virology-111821-103721
Patrick S Moore, Yuan Chang
{"title":"Are There More Human Cancer Viruses Left to Be Found?","authors":"Patrick S Moore, Yuan Chang","doi":"10.1146/annurev-virology-111821-103721","DOIUrl":"https://doi.org/10.1146/annurev-virology-111821-103721","url":null,"abstract":"<p><p>Of the thousands of viruses infecting humans, only seven cause cancer in the general population. Tumor sequencing is now a common cancer medicine procedure, and so it seems likely that more human cancer viruses already would have been found if they exist. Here, we review cancer characteristics that can inform a dedicated search for new cancer viruses, focusing on Kaposi sarcoma herpesvirus and Merkel cell polyomavirus as the most recent examples of successful genomic and transcriptomic searches. We emphasize the importance of epidemiology in determining which cancers to examine and describe approaches to virus discovery. Barriers to virus discovery, such as novel genomes and viral suppression of messenger RNA expression, may exist that prevent virus discovery using existing approaches. Optimally virus hunting should be performed in such a way that if no virus is found, the tumor can be reasonably excluded from having an infectious etiology and new information about the biology of the tumor can be found.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"11 1","pages":"239-259"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142356534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence and Scientific Reviews. 人工智能与科学评论》。
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-vi-11-060624-100111
Julie K Pfeiffer, Terence S Dermody
{"title":"Artificial Intelligence and Scientific Reviews.","authors":"Julie K Pfeiffer, Terence S Dermody","doi":"10.1146/annurev-vi-11-060624-100111","DOIUrl":"10.1146/annurev-vi-11-060624-100111","url":null,"abstract":"","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"iii-iv"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141321835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform. 将噬菌体 T4 作为基于蛋白质、无佐剂和无针头的黏膜大流行病疫苗设计平台。
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-111821-111145
Jingen Zhu, Pan Tao, Ashok K Chopra, Venigalla B Rao
{"title":"Bacteriophage T4 as a Protein-Based, Adjuvant- and Needle-Free, Mucosal Pandemic Vaccine Design Platform.","authors":"Jingen Zhu, Pan Tao, Ashok K Chopra, Venigalla B Rao","doi":"10.1146/annurev-virology-111821-111145","DOIUrl":"10.1146/annurev-virology-111821-111145","url":null,"abstract":"<p><p>The COVID-19 pandemic has transformed vaccinology. Rapid deployment of mRNA vaccines has saved countless lives. However, these platforms have inherent limitations including lack of durability of immune responses and mucosal immunity, high cost, and thermal instability. These and uncertainties about the nature of future pandemics underscore the need for exploring next-generation vaccine platforms. Here, we present a novel protein-based, bacteriophage T4 platform for rapid design of efficacious vaccines against bacterial and viral pathogens. Full-length antigens can be displayed at high density on a 120 × 86 nm phage capsid through nonessential capsid binding proteins Soc and Hoc. Such nanoparticles, without any adjuvant, induce robust humoral, cellular, and mucosal responses when administered intranasally and confer sterilizing immunity. Combined with structural stability and ease of manufacture, T4 phage provides an excellent needle-free, mucosal pandemic vaccine platform and allows equitable vaccine access to low- and middle-income communities across the globe.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"395-420"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11690488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141072063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome. 虚假警报XMRV、癌症和慢性疲劳综合征。
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-111821-125122
John M Coffin, Mary F Kearney
{"title":"False Alarm: XMRV, Cancer, and Chronic Fatigue Syndrome.","authors":"John M Coffin, Mary F Kearney","doi":"10.1146/annurev-virology-111821-125122","DOIUrl":"10.1146/annurev-virology-111821-125122","url":null,"abstract":"<p><p>Xenotropic murine leukemia virus (MLV)-related virus (XMRV) was first described in 2006 in some human prostate cancers. But it drew little attention until 2009, when it was also found, as infectious virus and as MLV-related DNA, in samples from people suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This discovery was rapidly followed by efforts of the international research community to understand the significance of the association and its potential to spread widely as an important human pathogen. Within a few years, efforts by researchers worldwide failed to repeat these findings, and mounting evidence for laboratory contamination with mouse-derived virus and viral DNA sequences became accepted as the explanation for the initial findings. As researchers engaged in these studies, we present here a historical review of the rise and fall of XMRV as a human pathogen, and we discuss the lessons learned from these events.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"261-281"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements. 噬菌体和移动遗传因子中普遍存在多种抗噬菌体防御机制
IF 8.1 1区 医学
Annual Review of Virology Pub Date : 2024-09-01 Epub Date: 2024-08-30 DOI: 10.1146/annurev-virology-100422-125123
Landon J Getz, Karen L Maxwell
{"title":"Diverse Antiphage Defenses Are Widespread Among Prophages and Mobile Genetic Elements.","authors":"Landon J Getz, Karen L Maxwell","doi":"10.1146/annurev-virology-100422-125123","DOIUrl":"10.1146/annurev-virology-100422-125123","url":null,"abstract":"<p><p>Bacterial viruses known as phages rely on their hosts for replication and thus have developed an intimate partnership over evolutionary time. The survival of temperate phages, which can establish a chronic infection in which their genomes are maintained in a quiescent state known as a prophage, is tightly coupled with the survival of their bacterial hosts. As a result, prophages encode a diverse antiphage defense arsenal to protect themselves and the bacterial host in which they reside from further phage infection. Similarly, the survival and success of prophage-related elements such as phage-inducible chromosomal islands are directly tied to the survival and success of their bacterial host, and they also have been shown to encode numerous antiphage defenses. Here, we describe the current knowledge of antiphage defenses encoded by prophages and prophage-related mobile genetic elements.</p>","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":" ","pages":"343-362"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141477760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education SEA-PHAGES 和 SEA-GENES:推进病毒学和科学教育
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2024-04-29 DOI: 10.1146/annurev-virology-113023-110757
Danielle M. Heller, Viknesh Sivanathan, David J. Asai, Graham F. Hatfull
{"title":"SEA-PHAGES and SEA-GENES: Advancing Virology and Science Education","authors":"Danielle M. Heller, Viknesh Sivanathan, David J. Asai, Graham F. Hatfull","doi":"10.1146/annurev-virology-113023-110757","DOIUrl":"https://doi.org/10.1146/annurev-virology-113023-110757","url":null,"abstract":"Research opportunities for undergraduate students are strongly advantageous, but implementation at a large scale presents numerous challenges. The enormous diversity of the bacteriophage population and a supportive programmatic structure provide opportunities to engage early-career undergraduates in phage discovery, genomics, and genetics. The Science Education Alliance (SEA) is an inclusive Research-Education Community (iREC) providing centralized programmatic support for students and faculty without prior experience in virology at institutions from community colleges to research-active universities to participate in two course-based projects, SEA-PHAGES (SEA Phage Hunters Advancing Genomic and Evolutionary Science) and SEA-GENES (SEA Gene-function Exploration by a Network of Emerging Scientists). Since 2008, the SEA has supported more than 50,000 undergraduate researchers who have isolated more than 23,000 bacteriophages of which more than 4,500 are fully sequenced and annotated. Students have functionally characterized hundreds of phage genes, and the phage collection has fueled the therapeutic use of phages for treatment of <jats:italic>Mycobacterium</jats:italic> infections. Participation in the SEA promotes student persistence in science education, and its inclusivity promotes a more equitable scientific community.","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"104 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling Much? Viral Control of Host Chromatin Dynamics 控制了多少?病毒对宿主染色质动力学的控制
IF 11.3 1区 医学
Annual Review of Virology Pub Date : 2024-04-29 DOI: 10.1146/annurev-virology-100422-011616
Laurel E. Kelnhofer-Millevolte, Edward A. Arnold, Daniel H. Nguyen, Daphne C. Avgousti
{"title":"Controlling Much? Viral Control of Host Chromatin Dynamics","authors":"Laurel E. Kelnhofer-Millevolte, Edward A. Arnold, Daniel H. Nguyen, Daphne C. Avgousti","doi":"10.1146/annurev-virology-100422-011616","DOIUrl":"https://doi.org/10.1146/annurev-virology-100422-011616","url":null,"abstract":"Viruses are exemplary molecular biologists and have been integral to scientific discovery for generations. It is therefore no surprise that nuclear replicating viruses have evolved to systematically take over host cell function through astoundingly specific nuclear and chromatin hijacking. In this review, we focus on nuclear replicating DNA viruses—herpesviruses and adenoviruses—as key examples of viral invasion in the nucleus. We concentrate on critical features of nuclear architecture, such as chromatin and the nucleolus, to illustrate the complexity of the virus-host battle for resources in the nucleus. We conclude with a discussion of the technological advances that have enabled the discoveries we describe and upcoming steps in this burgeoning field.","PeriodicalId":48761,"journal":{"name":"Annual Review of Virology","volume":"43 1","pages":""},"PeriodicalIF":11.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信