Earths Future最新文献

筛选
英文 中文
Global Wetland Methane Emissions From 2001 to 2020: Magnitude, Dynamics and Controls 2001 至 2020 年全球湿地甲烷排放量:规模、动态和控制
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-07 DOI: 10.1029/2024EF004794
Han Xiao, Chaoqing Song, Shihua Li, Xiao Lu, Minqi Liang, Xiaosheng Xia, Wenping Yuan
{"title":"Global Wetland Methane Emissions From 2001 to 2020: Magnitude, Dynamics and Controls","authors":"Han Xiao,&nbsp;Chaoqing Song,&nbsp;Shihua Li,&nbsp;Xiao Lu,&nbsp;Minqi Liang,&nbsp;Xiaosheng Xia,&nbsp;Wenping Yuan","doi":"10.1029/2024EF004794","DOIUrl":"https://doi.org/10.1029/2024EF004794","url":null,"abstract":"<p>The large uncertainties in estimating CH<sub>4</sub> emissions from wetland ecosystems, the leading natural source to the atmosphere, substantially hinder the quantification of the global CH<sub>4</sub> budget. This study used the IBIS-CH<sub>4</sub> (Integrated BIosphere Simulator-Methane) model, a process-based model integrating microbial mechanisms associated with CH<sub>4</sub> production and oxidation processes, to simulate global wetland CH<sub>4</sub> emissions from 2001 to 2020. Initially, we employed the IBIS-CH<sub>4</sub> model to evaluate its performance across 26 diverse wetland sites worldwide. The results showed that the magnitude and seasonality of observed CH<sub>4</sub> fluxes over various wetland sites were well reproduced. We then used this model to estimate the annual global wetland CH<sub>4</sub> emissions from 2001 to 2020, averaging 152.67 Tg CH<sub>4</sub> yr<sup>−1</sup>, with a range of 135.72–167.57 Tg CH<sub>4</sub> yr<sup>−1</sup>. The estimated global wetland CH<sub>4</sub> emissions are generally in agreement with the current bottom-up estimates (117–256 Tg CH<sub>4</sub> yr<sup>−1</sup>) and closely overlap with independent top-down estimates (139–183 Tg CH<sub>4</sub> yr<sup>−1</sup>). During 2001–2020, the estimated global wetland CH<sub>4</sub> emissions initially showed an increasing trend, followed by a decline. The peak of CH<sub>4</sub> emissions reached in 2010, coinciding with the peak of wetland area. The majority of global wetland CH<sub>4</sub> emissions were concentrated in tropical regions, which exhibited a clear seasonality and had a peak in July. The impact of meteorological factors on wetland CH<sub>4</sub> emissions was greater than that of leaf area index, indicating the importance of soil hydrothermal conditions on wetland CH<sub>4</sub> emissions.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004794","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cyclone Gabrielle as a Design Storm for Northeastern Aotearoa New Zealand Under Anthropogenic Warming 加布里埃尔气旋是人为变暖条件下新西兰东北部奥特亚罗瓦地区的设计风暴
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-06 DOI: 10.1029/2024EF004772
Dáithí A. Stone, Christopher J. Noble, Greg E. Bodeker, Sam M. Dean, Luke J. Harrington, Suzanne M. Rosier, Graham D. Rye, Jordis S. Tradowsky
{"title":"Cyclone Gabrielle as a Design Storm for Northeastern Aotearoa New Zealand Under Anthropogenic Warming","authors":"Dáithí A. Stone,&nbsp;Christopher J. Noble,&nbsp;Greg E. Bodeker,&nbsp;Sam M. Dean,&nbsp;Luke J. Harrington,&nbsp;Suzanne M. Rosier,&nbsp;Graham D. Rye,&nbsp;Jordis S. Tradowsky","doi":"10.1029/2024EF004772","DOIUrl":"https://doi.org/10.1029/2024EF004772","url":null,"abstract":"<p>Cyclone Gabrielle passed along the northern coast of Aotearoa New Zealand in February 2023, producing historic rainfall accumulations and impacts. Gabrielle was an ex-tropical cyclone that stalled and re-energised off the north coast, resembling descriptions of worst case scenarios for the northeast of the country. Here we report on a comparison of the actual forecast of the storm against forecasts under conditions representative of a climate without anthropogenic interference and of a climate +2.0°C warmer than pre-industrial (about 1.0°C cooler and warmer than present respectively). We find that regional total rainfall accumulations from a Gabrielle-like storm are about 10% higher because of the historical anthropogenic warming, and will increase by a larger amount under similar future warming. These differences are driven by a 20% (relative to a non-anthropogenic world) to 30% (relative to a +2.0°C world) rise in peak rainfall rates, which in turn is mainly driven by a more temporally concentrated column-integrated moisture flux. The forecast model generates the larger increase for the +2.0°C world through greater precipitation efficiency, reflecting the importance of unresolved precipitation processes in the climate change response of rainfall extremes.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004772","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variations in Rainfall Structure of Western North Pacific Landfalling Tropical Cyclones in the Warming Climates 气候变暖条件下北太平洋西部登陆热带气旋降雨结构的变化
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-06 DOI: 10.1029/2024EF004808
Thao Linh Tran, Elizabeth A. Ritchie, Sarah E. Perkins-Kirkpatrick, Hai Bui, Thang M. Luong
{"title":"Variations in Rainfall Structure of Western North Pacific Landfalling Tropical Cyclones in the Warming Climates","authors":"Thao Linh Tran,&nbsp;Elizabeth A. Ritchie,&nbsp;Sarah E. Perkins-Kirkpatrick,&nbsp;Hai Bui,&nbsp;Thang M. Luong","doi":"10.1029/2024EF004808","DOIUrl":"https://doi.org/10.1029/2024EF004808","url":null,"abstract":"<p>Observations and climate projections suggest a larger increase in tropical cyclone (TC)-induced rainfall than that can be explained by the Clausius-Clapeyron relationship of 7% increase in vapor content for each 1°C degree rise in temperature. However, these studies using diverse data sources and methods over various periods show inconsistencies regarding the location of this increase - whether in the TC inner core or outer regions - and offer differing explanations for the reported trends. This study uses the Pseudo-global warming methodology on simulations of 117 western North Pacific TCs making landfall in Southeast Asia to investigate changes in TC rainfall structure by the end of the century under the SSP2-4.5 and SSP3-7.0 scenarios. Specifically, it tests the sensitivity of changing trends to various analysis methods used in previous studies and identifies the underlying physical mechanisms driving these changes. The findings indicate an amplified increase in rainfall in the TC inner core across all future scenarios, along with potentially decreased rainfall in the outer region under certain future climate conditions. Among TC categories, Supertyphoons exhibit the most significant increased rainfall across future states. Changes in TC primary and secondary circulations, TC structure, and the convergence of heat and moisture are the main factors shaping future rainfall patterns, outweighing the effects of changes in atmospheric and convective stability.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004808","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unraveling the Impacts: How Extreme Weather Events Disrupt Wood Product Markets 解读影响:极端天气事件如何扰乱木制品市场
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-05 DOI: 10.1029/2024EF004742
Craig M. T. Johnston, Jesse D. Henderson, Jinggang Guo, Jeffrey P. Prestemon, Jennifer Costanza
{"title":"Unraveling the Impacts: How Extreme Weather Events Disrupt Wood Product Markets","authors":"Craig M. T. Johnston,&nbsp;Jesse D. Henderson,&nbsp;Jinggang Guo,&nbsp;Jeffrey P. Prestemon,&nbsp;Jennifer Costanza","doi":"10.1029/2024EF004742","DOIUrl":"https://doi.org/10.1029/2024EF004742","url":null,"abstract":"<p>While extreme weather events are often localized, the potential effects on global forests can be far reaching due to the interconnected nature of forest product markets. To better understand these dynamics, this study leverages historical forest-based wind damage data in the United States and applies this information as shocks within a global forest sector outlook model. A large, localized wind event modeled as a shock to the US South creates a one-time increase of 18.7 million m<sup>3</sup> from salvage harvest operations, equal to over 4% of national harvest. This crowds out traditional harvest activities, leading to downward pressure on prices in the short run, followed by a persistent effect that could take approximately 25 years to dissipate from markets. Average annual wind damage contributes downward pressure on roundwood prices between 1% and 4% in the United States, and this effect is distributed to other countries. The findings suggest that large, localized shocks reverberate across regions and wood product markets due to their interconnected supply chains and trade patterns, and these impacts have important temporal dynamics. Another key result is that the magnitude of these effects are offset by endogenous market reactions in other markets. In other words, unaffected regions change their harvesting patterns in order to compensate for changes in the availability of fiber, shedding light on the importance of capturing global channels as large shocks materialize in changes in market dynamics internationally. Monte Carlo simulations suggest a wide confidence band on salvage harvest rates and prices.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004742","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Knowns and Unknowns in Future Human Pressures on the Ocean 未来人类对海洋压力的已知和未知因素
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-05 DOI: 10.1029/2024EF004559
O. Alejandra Vargas-Fonseca, Melanie Frazier, Amanda T. Lombard, Benjamin S. Halpern
{"title":"Knowns and Unknowns in Future Human Pressures on the Ocean","authors":"O. Alejandra Vargas-Fonseca,&nbsp;Melanie Frazier,&nbsp;Amanda T. Lombard,&nbsp;Benjamin S. Halpern","doi":"10.1029/2024EF004559","DOIUrl":"https://doi.org/10.1029/2024EF004559","url":null,"abstract":"<p>Growing demands on ocean resources are placing increasing pressures on ocean ecosystems. To assess the current state of knowledge of future human pressures on the ocean, we conducted a literature review of recent and projected trends of 25 anthropogenic pressures, comprising most of the identified human pressures on the global oceans. To better understand gaps in the data, we developed a comprehensive framework of the activities contributing to each pressure. All pressures were allocated to five categories (biological disruption, disturbance and removal, altered ocean chemistry, pollution, and climate pressures). All pressures are expected to worsen in the future under business-as-usual scenarios (or similar) based on past trajectories and/or models of future scenarios. Eight of the pressures assessed have not been projected into the future (diseases and pathogens, introduced coastal wildlife predation, disruption to sediment dynamics, wildlife strikes, organic and inorganic chemical pollution, light and noise pollution), likely due to the limited availability of data describing current pressures, the challenges of modeling future pressures, and high levels of uncertainty. We thus recommend they receive priority attention to assess their likely future trajectories, given their potential magnitude of influence.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004559","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolution of the Antarctic Ice Sheet Over the Next Three Centuries From an ISMIP6 Model Ensemble 从 ISMIP6 模型集合看未来三百年南极冰盖的演变
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-04 DOI: 10.1029/2024EF004561
Hélène Seroussi, Tyler Pelle, William H. Lipscomb, Ayako Abe-Ouchi, Torsten Albrecht, Jorge Alvarez-Solas, Xylar Asay-Davis, Jean-Baptiste Barre, Constantijn J. Berends, Jorge Bernales, Javier Blasco, Justine Caillet, David M. Chandler, Violaine Coulon, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Julius Garbe, Fabien Gillet-Chaulet, Rupert Gladstone, Heiko Goelzer, Nicholas Golledge, Ralf Greve, G. Hilmar Gudmundsson, Holly Kyeore Han, Trevor R. Hillebrand, Matthew J. Hoffman, Philippe Huybrechts, Nicolas C. Jourdain, Ann Kristin Klose, Petra M. Langebroek, Gunter R. Leguy, Daniel P. Lowry, Pierre Mathiot, Marisa Montoya, Mathieu Morlighem, Sophie Nowicki, Frank Pattyn, Antony J. Payne, Aurélien Quiquet, Ronja Reese, Alexander Robinson, Leopekka Saraste, Erika G. Simon, Sainan Sun, Jake P. Twarog, Luke D. Trusel, Benoit Urruty, Jonas Van Breedam, Roderik S. W. van de Wal, Yu Wang, Chen Zhao, Thomas Zwinger
{"title":"Evolution of the Antarctic Ice Sheet Over the Next Three Centuries From an ISMIP6 Model Ensemble","authors":"Hélène Seroussi,&nbsp;Tyler Pelle,&nbsp;William H. Lipscomb,&nbsp;Ayako Abe-Ouchi,&nbsp;Torsten Albrecht,&nbsp;Jorge Alvarez-Solas,&nbsp;Xylar Asay-Davis,&nbsp;Jean-Baptiste Barre,&nbsp;Constantijn J. Berends,&nbsp;Jorge Bernales,&nbsp;Javier Blasco,&nbsp;Justine Caillet,&nbsp;David M. Chandler,&nbsp;Violaine Coulon,&nbsp;Richard Cullather,&nbsp;Christophe Dumas,&nbsp;Benjamin K. Galton-Fenzi,&nbsp;Julius Garbe,&nbsp;Fabien Gillet-Chaulet,&nbsp;Rupert Gladstone,&nbsp;Heiko Goelzer,&nbsp;Nicholas Golledge,&nbsp;Ralf Greve,&nbsp;G. Hilmar Gudmundsson,&nbsp;Holly Kyeore Han,&nbsp;Trevor R. Hillebrand,&nbsp;Matthew J. Hoffman,&nbsp;Philippe Huybrechts,&nbsp;Nicolas C. Jourdain,&nbsp;Ann Kristin Klose,&nbsp;Petra M. Langebroek,&nbsp;Gunter R. Leguy,&nbsp;Daniel P. Lowry,&nbsp;Pierre Mathiot,&nbsp;Marisa Montoya,&nbsp;Mathieu Morlighem,&nbsp;Sophie Nowicki,&nbsp;Frank Pattyn,&nbsp;Antony J. Payne,&nbsp;Aurélien Quiquet,&nbsp;Ronja Reese,&nbsp;Alexander Robinson,&nbsp;Leopekka Saraste,&nbsp;Erika G. Simon,&nbsp;Sainan Sun,&nbsp;Jake P. Twarog,&nbsp;Luke D. Trusel,&nbsp;Benoit Urruty,&nbsp;Jonas Van Breedam,&nbsp;Roderik S. W. van de Wal,&nbsp;Yu Wang,&nbsp;Chen Zhao,&nbsp;Thomas Zwinger","doi":"10.1029/2024EF004561","DOIUrl":"https://doi.org/10.1029/2024EF004561","url":null,"abstract":"<p>The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary effort of CMIP6 (Coupled Model Intercomparison Project–Phase 6) focusing on ice sheets, designed to provide an ensemble of process-based projections of the ice-sheet contribution to sea-level rise over the twenty-first century. However, the behavior of the Antarctic Ice Sheet beyond 2100 remains largely unknown: several instability mechanisms can develop on longer time scales, potentially destabilizing large parts of Antarctica. Projections of Antarctic Ice Sheet evolution until 2300 are presented here, using an ensemble of 16 ice-flow models and forcing from global climate models. Under high-emission scenarios, the Antarctic sea-level contribution is limited to less than 30 cm sea-level equivalent (SLE) by 2100, but increases rapidly thereafter to reach up to 4.4 m SLE by 2300. Simulations including ice-shelf collapse lead to an additional 1.1 m SLE on average by 2300, and can reach 6.9 m SLE. Widespread retreat is observed on that timescale in most West Antarctic basins, leading to a collapse of large sectors of West Antarctica by 2300 in 30%–40% of the ensemble. While the onset date of retreat varies among ice models, the rate of upstream propagation is highly consistent once retreat begins. Calculations of sea-level contribution including water density corrections lead to an additional ∼10% sea level and up to 50% for contributions accounting for bedrock uplift in response to ice loading. Overall, these results highlight large sea-level contributions from Antarctica and suggest that the choice of ice sheet model remains the leading source of uncertainty in multi-century projections.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004561","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142142362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impacts of AMOC Collapse on Monsoon Rainfall: A Multi-Model Comparison AMOC 崩溃对季风降雨的影响:多模型比较
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-03 DOI: 10.1029/2023EF003959
M. Ben-Yami, P. Good, L. C. Jackson, M. Crucifix, A. Hu, O. Saenko, D. Swingedouw, N. Boers
{"title":"Impacts of AMOC Collapse on Monsoon Rainfall: A Multi-Model Comparison","authors":"M. Ben-Yami,&nbsp;P. Good,&nbsp;L. C. Jackson,&nbsp;M. Crucifix,&nbsp;A. Hu,&nbsp;O. Saenko,&nbsp;D. Swingedouw,&nbsp;N. Boers","doi":"10.1029/2023EF003959","DOIUrl":"https://doi.org/10.1029/2023EF003959","url":null,"abstract":"<p>A collapse of the Atlantic Meridional Overturning Circulation (AMOC) would have substantial impacts on global precipitation patterns, especially in the vulnerable tropical monsoon regions. We assess these impacts in experiments that apply the same freshwater hosing to four state-of-the-art climate models with bistable AMOC. As opposed to previous results, we find that the spatial and seasonal patterns of precipitation change are remarkably consistent across models. We focus on the South American Monsoon (SAM), the West African Monsoon (WAM), the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM). Models consistently suggest substantial disruptions for WAM, ISM, and EASM with shorter wet and longer dry seasons (−29.07%, −18.76%, and −3.78% ensemble mean annual rainfall change, respectively). Models also agree on changes for the SAM, suggesting rainfall increases overall, in contrast to previous studies. These are more pronounced in the southern Amazon (+43.79%), accompanied by decreasing dry-season length. Consistently across models, our results suggest a robust and major rearranging of all tropical monsoon systems in response to an AMOC collapse.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF003959","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Hazard Interrelationships and Risk Scenarios in Urban Areas: A Case of Nairobi and Istanbul 城市地区多种灾害的相互关系和风险情景:内罗毕和伊斯坦布尔案例
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-03 DOI: 10.1029/2023EF004413
Robert Šakić Trogrlić, Harriet E. Thompson, Emin Yahya Menteşe, Ekbal Hussain, Joel C. Gill, Faith E. Taylor, Emmah Mwangi, Emine Öner, Vera G. Bukachi, Bruce D. Malamud
{"title":"Multi-Hazard Interrelationships and Risk Scenarios in Urban Areas: A Case of Nairobi and Istanbul","authors":"Robert Šakić Trogrlić,&nbsp;Harriet E. Thompson,&nbsp;Emin Yahya Menteşe,&nbsp;Ekbal Hussain,&nbsp;Joel C. Gill,&nbsp;Faith E. Taylor,&nbsp;Emmah Mwangi,&nbsp;Emine Öner,&nbsp;Vera G. Bukachi,&nbsp;Bruce D. Malamud","doi":"10.1029/2023EF004413","DOIUrl":"https://doi.org/10.1029/2023EF004413","url":null,"abstract":"<p>This paper introduces a methodology for characterizing the breadth of natural hazard types, hazard interrelationships, and risk scenarios in Global South urban areas, focusing on Nairobi, Kenya, and Istanbul, Türkiye. Our approach involves (a) a comprehensive characterization of multi-hazards and their interrelationships in an urban setting, (b) collaborative development of relevant multi-hazard scenarios with local disaster risk reduction (DRR) stakeholders, and (c) analysis of the potential for integrating these scenarios into urban DRR efforts. Using a critical review of 135 sources (academic and gray literature, databases, online, and social media), we identify 19 natural hazard types that might influence Nairobi and 23 in Istanbul. We further identified in Nairobi 88 and Istanbul 105 hazard interrelationship pairs (e.g., an earthquake triggering landslides) out of a possible 576 interrelationships. These findings are cataloged in an extensive database, which informs the creation of multi-hazard risk scenario exemplars for each city. These exemplars are refined through stakeholder engagement, involving four workshops (47 participants) and nine semi-structured interviews with local DRR stakeholders. Despite the identified benefits, this engagement reveals a significant gap in integrating multi-hazards into current urban policy and practice. Governance challenges are highlighted as a key barrier, but opportunities for better integration are also identified, including evolving policies and growing awareness among urban actors. Our approach, particularly relevant in data-scarce urban areas of low- and middle-income countries, provides a framework for exploring multi-hazard issues in various urban contexts.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023EF004413","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142137786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global Assessment of Compound Climate Extremes and Exposures of Population, Agriculture, and Forest Lands Under Two Climate Scenarios 两种气候情景下的复合极端气候及人口、农业和林地暴露的全球评估
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-02 DOI: 10.1029/2024EF004845
Tayler A. Schillerberg, Di Tian
{"title":"Global Assessment of Compound Climate Extremes and Exposures of Population, Agriculture, and Forest Lands Under Two Climate Scenarios","authors":"Tayler A. Schillerberg,&nbsp;Di Tian","doi":"10.1029/2024EF004845","DOIUrl":"https://doi.org/10.1029/2024EF004845","url":null,"abstract":"<p>Climate change is expected to increase the global occurrence and intensity of heatwaves, extreme precipitation, and flash droughts. However, it is not well understood how the compound heatwave, extreme precipitation, and flash drought events will likely change, and how global population, agriculture, and forest will likely be exposed to these compound events under future climate change scenarios. This research uses eight CMIP6 climate models to assess the current and future global compound climate extreme events, as well as population, agriculture, and forestry exposures to these events, under two climate scenarios, Shared Socioeconomic Pathways (SSP), SSP1-2.6 and SSP5-8.5 for three time periods: early-, mid-, and late- 21st century. Climate extremes are derived for heatwaves, extreme precipitation, and flash droughts using locational-dependent thresholds. We find that compound heatwaves and flash drought events result in the largest increases in exposure of populations, agriculture, and forest lands, under SSP5-8.5 late-century projections of sequential heatwaves and flash droughts. Late-century projections of sequential heatwaves and flash droughts show hot spots of exposure increases in population exposure greater than 50 million person-events in China, India, and Europe; increases in agriculture land exposures greater than 90 thousand km<sup>2</sup>-events in China, South America, and Oceania; and increase in forest land exposure greater than 120 thousand km<sup>2</sup>-events in Oceania and South America regions when compared to the historical period. The findings from this study can be potentially useful for informing global climate adaptations.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004845","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-Driven Projections of Future Global Wetlands Extent 气候驱动的未来全球湿地面积预测
IF 7.3 1区 地球科学
Earths Future Pub Date : 2024-09-02 DOI: 10.1029/2024EF004553
Lucas Hardouin, Bertrand Decharme, Jeanne Colin, Christine Delire
{"title":"Climate-Driven Projections of Future Global Wetlands Extent","authors":"Lucas Hardouin,&nbsp;Bertrand Decharme,&nbsp;Jeanne Colin,&nbsp;Christine Delire","doi":"10.1029/2024EF004553","DOIUrl":"https://doi.org/10.1029/2024EF004553","url":null,"abstract":"<p>Wetlands are crucial components of the Earth's system, interacting with various processes such as the hydrological cycle, energy exchanges with the atmosphere, and global nitrogen and carbon cycles. The future trajectory of wetlands is anticipated to be influenced not only by direct human activities, but also by climate change. Here we present our assessment of climate-driven global changes in wetlands extent, focusing on the main wetland complexes. We used an approach based on the Topographic Hydrological model (TOPMODEL) and soil liquid water content projections from 14 models of the Coupled Model Intercomparison Project Phase 6 (CMIP6). Our analysis reveals a consistent decrease in wetlands extent in the Mediterranean, Central America, and northern South America, with a substantial loss of 28% in the western Amazon Basin for the end of the 21st century (2081–2100) under the SSP370 scenario. Conversely, Central Africa exhibits an increase in wetlands extent, except in the Congo Basin. Nevertheless, most of the areas studied (80%) present uncertain results, due to conflicting projections of changes between the models. Notably, we show that there is significant uncertainty among CMIP6 models regarding liquid soil water content in high latitudes. By narrowing our focus to 10 models, which seem to better represent the thawing of permafrost, we obtain a better inter-model agreement. We then find a modest declines in the overall global area (&lt;5%), but an average loss of 13% beyond 50°N. Specific areas like the Hudson Bay Lowlands experiencing a 21% decrease and the Western Siberian Lowlands a 15% decrease.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":null,"pages":null},"PeriodicalIF":7.3,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF004553","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信