Flooding Projections Due To Groundwater Emergence Caused by Sea Level Variability

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2025-07-12 DOI:10.1029/2025EF006270
Austin T. Barnes, Mark A. Merrifield, Kian Bagheri, Morgan C. Levy, Hassan Davani
{"title":"Flooding Projections Due To Groundwater Emergence Caused by Sea Level Variability","authors":"Austin T. Barnes,&nbsp;Mark A. Merrifield,&nbsp;Kian Bagheri,&nbsp;Morgan C. Levy,&nbsp;Hassan Davani","doi":"10.1029/2025EF006270","DOIUrl":null,"url":null,"abstract":"<p>Rising groundwater tables due to sea level rise (SLR) pose a critical but understudied threat to low-lying coastal regions. This study uses field observations and dynamic modeling to investigate drivers of groundwater variability and to project flooding risks from emergent groundwater in Imperial Beach, California. Hourly groundwater table data from four monitoring wells (2021–2024) reveal distinct aquifer behaviors across soil types. In transmissive coastal sandy soils, groundwater levels are dominated by ocean tides, with secondary contributions from non-tidal sea level variability and seasonal recharge. In this setting, we calibrated an empirical groundwater model to observations, and forced the model with regional SLR scenarios. We project that groundwater emergence along the low-lying coastal road will begin by the 2060s under intermediate SLR trajectories, and escalate to near-daily flooding by 2100. Over 20% of San Diego County's coastline shares similar transmissive sandy geology and thus similar flooding risk. Results underscore the urgency of integrating groundwater hazards into coastal resilience planning, as current adaptation strategies in Imperial Beach—focused on surface flooding—are insufficient to address infrastructure vulnerabilities from below. This study provides a transferable framework for assessing groundwater-driven flooding in transmissive coastal aquifers, where SLR-induced groundwater rise threatens critical infrastructure decades before permanent inundation.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"13 7","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2025EF006270","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025EF006270","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rising groundwater tables due to sea level rise (SLR) pose a critical but understudied threat to low-lying coastal regions. This study uses field observations and dynamic modeling to investigate drivers of groundwater variability and to project flooding risks from emergent groundwater in Imperial Beach, California. Hourly groundwater table data from four monitoring wells (2021–2024) reveal distinct aquifer behaviors across soil types. In transmissive coastal sandy soils, groundwater levels are dominated by ocean tides, with secondary contributions from non-tidal sea level variability and seasonal recharge. In this setting, we calibrated an empirical groundwater model to observations, and forced the model with regional SLR scenarios. We project that groundwater emergence along the low-lying coastal road will begin by the 2060s under intermediate SLR trajectories, and escalate to near-daily flooding by 2100. Over 20% of San Diego County's coastline shares similar transmissive sandy geology and thus similar flooding risk. Results underscore the urgency of integrating groundwater hazards into coastal resilience planning, as current adaptation strategies in Imperial Beach—focused on surface flooding—are insufficient to address infrastructure vulnerabilities from below. This study provides a transferable framework for assessing groundwater-driven flooding in transmissive coastal aquifers, where SLR-induced groundwater rise threatens critical infrastructure decades before permanent inundation.

Abstract Image

由海平面变化引起的地下水涌现引起的洪水预估
由于海平面上升(SLR)导致的地下水位上升对低洼沿海地区构成了严重但尚未得到充分研究的威胁。本研究使用实地观测和动态建模来调查加利福尼亚州帝国海滩地下水变化的驱动因素,并预测从紧急地下水中产生的洪水风险。从四个监测井(2021-2024)获得的每小时地下水位数据揭示了不同土壤类型的不同含水层行为。在透射性沿海沙质土壤中,地下水位主要由海潮决定,其次是非潮汐性海平面变化和季节性补给。在此背景下,我们将经验地下水模型与观测数据进行了校准,并对该模型进行了区域SLR情景的强迫。我们预计,到20世纪60年代,在中等SLR轨迹下,低洼沿海道路沿线的地下水将开始出现,并在2100年升级为几乎每天都有洪水。圣地亚哥县超过20%的海岸线具有类似的传播性沙质地质,因此具有类似的洪水风险。研究结果强调了将地下水灾害纳入沿海韧性规划的紧迫性,因为帝国海滩目前的适应策略(侧重于地表洪水)不足以解决底层基础设施的脆弱性。这项研究提供了一个可转移的框架,用于评估沿海传输性含水层中地下水驱动的洪水,在这些含水层中,slr引起的地下水上升在永久淹没前几十年就会威胁到关键基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信