{"title":"Human needs and future challenges","authors":"R. Zaheer, T. Reuter","doi":"10.2527/AF.2017.0111","DOIUrl":"https://doi.org/10.2527/AF.2017.0111","url":null,"abstract":"","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46643767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mis)information and the politicization of food security","authors":"S. Smyth, P. Phillips, D. Castle","doi":"10.2527/AF.2017.0116","DOIUrl":"https://doi.org/10.2527/AF.2017.0116","url":null,"abstract":"Agricultural biotechnology, particularly the introduction of genetically modified (GM) crops continues to be controversial more than two decades after they were introduced. For a technology that is now so widely adopted around the world, why is this so? Among the many explanations that have been offered, one focuses on the way that differing perspectives on new technology introductions become entrenched, whether or not they are warranted by the available evidence. Genetically modified crops have experienced a long tradition of entrenched and polarized views, commencing with an insalubrious exchange between Richard Dawkins and Prince Charles on the occasion of the latter’s 2000 Reith Lecture (Ruse and Castle, 2002). More recently in late 2016, the New York Times claimed it had conducted an “extensive examination” of GM crops and found their benefits to be lacking, a claim that was vociferously challenged by scientists and famers alike, some of whom wrote a pointed rebuttal (Hakim, 2016; Giddings, 2016). The rebuttal gives references to several reviews and analyses of the benefits—and it should be added, the limitations—of GM crops, particularly in the United States and Canada, and other GM crop adopting nations. No one has claimed that GM crop technologies are the “silver bullet” to effective yield gain and pesticide reduction (Scott, 2016), but the record of evidence suggests there have been substantial benefits for consumers, farmers, human health, the environment, and sustainable development. Despite research dating back 15 yr reporting the benefits of GM crops, and acknowledgment of their limitations, critics of GM crops (and biotechnology more generally) continue to dismiss this information and ignore the multitude of benefits resulting from their adoption. Critics go as far as insinuating that the biotechnology industry has co-opted academic researchers and is paying academics to mislead the public in the quantification of the benefits of biotech crops, as is evidenced by the US Right to Know campaign’s request for freedom-of-information access to the emails of more than 40 leading American academics (Kloor, 2015). These opponents suggest that the distribution of benefits is not equal (benefit distribution is not equal for any technology), causes farmers to commit suicide, and is polluting the land (Adams, 2014). Much of this misleading information was captured in the 2013 report released by the United Nations Conference on Trade and Development (UNCTAD) entitled, “Trade and Environmental Review 2013: Wake Up Before It Is Too Late” (United Nations Conference on Trade and Development, 2013). While containing contributions from more than 60 experts, no single expert in biotechnology or GM crops was listed in the table of contents. On the contrary, many of the contributors listed have been longstanding critics of biotechnology and GM crops. The essential message of this lengthy report was that for food security to exist over the remainder of th","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44077159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GMO crops in animal nutrition","authors":"J. Vicini","doi":"10.2527/AF.2017.0113","DOIUrl":"https://doi.org/10.2527/AF.2017.0113","url":null,"abstract":"The University of Arkansas System Division of Agriculture offers all its Extension and Research programs and services without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer. Arkansas Is Our Campus Agriculture is associated with several critical societal issues, including carbon footprint and climate change, water use, biodiversity, food security, early childhood nutrition and food vs. feed vs. fuel. As an industry, agriculture needs to do a better job communicating with a public that in industrialized countries has become too distant from current agricultural practices.","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0113","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47304300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Genome-edited livestock: Ethics and social acceptance","authors":"T. Ishii","doi":"10.2527/AF.2017.0115","DOIUrl":"https://doi.org/10.2527/AF.2017.0115","url":null,"abstract":"The agricultural application of genetic engineering has advanced in the field of crop breeding. In 1994, the US Food and Drug Administration (FDA) approved a genetically modified (GM) tomato variety, the world’s first GM crop for food consumption (Bruening and Lyons, 2000). In this GM tomato (the Flavr Savr), ripening was delayed by the insertion of an antisense gene that interferes with polygalacturonase production. Although the regulatory approval of GM crops largely demands strict assessments of the environmental risks and food safety, the commercial cultivation of GM crops with an exogenous gene (termed transgene) has spread to at least 28 countries, including the USA, Brazil, Argentina, India, Canada, China, and some European countries (Ishii and Araki, 2016). Conversely, there have been few regulatory approvals regarding GM livestock, with the exception of GM goats for “pharming” in which biopharmaceuticals are manufactured using transgenesis (FDA, 2009). Currently, older genetic engineering practices, such as transgenesis, are giving way to genome editing. Genome editing tools, such as zincfinger nucleases (ZFNs; Klug, 2010), transcription activator-like effector nucleases (TALENs; Joung and Sander, 2013), and the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas 9 (Barrangou and Doudna, 2016), can break DNA double strands at target sites and then achieve various types of genetic modification via non-homologous end-joining (NHEJ) or homology-directed repair (HDR), thus potentially adding new value to agriculture (Figure 1). Recent reviews suggest that NHEJ is preferred in crop genome editing because the resultant plants are considered to contain no transgenes, which is one of the major concerns over GM crops from regulatory and social aspects (Hartung and Schiemann, 2014; Voytas and Gao, 2014; Araki and Ishii, 2015). Genome editing has also been applied in livestock breeding (Carlson et al., 2012; Hai et al., 2014; Crispo et al., 2015; Cui et al., 2015; Proudfoot et al., 2015; Wang et al., 2015a; Wang et al., 2015b; Wang et al., 2015c; Carlson et al., 2016; Fischer et al., 2016; Oishi et al., 2016; Petersen et al., 2016; Tanihara et al., 2016; Wang et al., 2016; Whitworth et al., 2016). Animals modified via NHEJ are unlikely to impose substantial risks on the environment because they can be managed within a farm, unlike GM crops, which are intentionally released into the environment (field cultivation). Thus, one can presume that the products derived from genome-edited livestock will soon be accepted in society if the food safety can be confirmed. However, it would be inappropriate to presume that such a favorable course of events is the only possibility. In November 2015, the FDA approved a GM salmon for food consumption (FDA, 2015). Nonetheless, citizen groups and environmentalists still loudly oppose the FDA’s decision about its safety. In addition, they questioned the environmental risk that it posed to wild salmon ","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0115","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41737320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The future of genetically engineered plants to stabilize yield and improve feed","authors":"G. Dhariwal, A. Laroche","doi":"10.2527/AF.2017.0112","DOIUrl":"https://doi.org/10.2527/AF.2017.0112","url":null,"abstract":"","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46204723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Developing precision livestock farming tools for precision dairy farming","authors":"Tomas Norton, D. Berckmans","doi":"10.2527/AF.2017.0104","DOIUrl":"https://doi.org/10.2527/AF.2017.0104","url":null,"abstract":"For centuries, milk and dairy products have been an important source of dietary energy, protein, and fat for the global population. Currently, milk is the EU’s number one agricultural product, accounting for circa 15% of agricultural output in terms of value (European Parliament, 2015). The EU diary sector is supported by 650,000 specialized dairy farmers and 18 million milking cows and has a labor force of about 1.2 million people (European Parliament, 2015). However, since the abolishment of milk quotas in 2015, farmers are facing increased pressures to exploit the economies of scale by increasing the size of their herds. With larger numbers of cows per farm, farmers no longer have the same time traditionally had to care for their animals. Therefore, the application of technology is becoming more important for EU dairy farmers than ever before. Precision livestock farming (PLF) represents the application of modern information and computer technology (ICT) for the real-time monitoring and management of animals. In dairy production, PLF systems can be important tools to complement and support the skills of the farmer in the monitoring and assessing cow health and welfare. Automated PLF systems enable dairy farmers to manage larger herds on a more time-efficient manner (Rutten et al., 2013). Automated systems exist to monitor behavioral activities for detection of lameness (Kashiha et al., 2013) and eustrus (Dolecheck et al., 2015). However, there are far fewer studies on the design/implementation of cow behavior monitoring for other important health events such as metabolic diseases or mastitis. When developing PLF systems for real-time monitoring of dairy cow health, welfare, and productivity, the development process should be done within a framework specifically designed for living organisms. A core principle in this regard is that any living organism can be considered a CITD system, which stands for complex, individually different, time-varying, and dynamic (Berckmans and Aerts, 2006; Quanten et al., 2006). A living organism is much more complex than any mechanical, electronic or ICT system. The complexity of information transmission in a single cell of a living organism is for example much higher than in most man-made systems (e.g., today’s most powerful microchip). It is obvious that all living organisms are individually different. The general approach in biological research and the management of biological process (e.g., medical world, livestock world) in industry and society is still to compare groups of living organisms by looking for statistical differences between group averages using experiments. However, there is not a single living organism that lives or acts as the purely theoretical average of a group since all living organisms are individually differDeveloping precision livestock farming tools for precision dairy farming","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0104","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68979252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precision livestock farming in egg production","authors":"H. Xin, Kai Liu","doi":"10.2527/AF.2017.0105","DOIUrl":"https://doi.org/10.2527/AF.2017.0105","url":null,"abstract":"This article focuses on precision livestock farming (PLF) as it pertains to egg production. Specific contents include: (1) an overview of evolution in the egg industry that is reflective of what is now known as PLF and the new trend of egg production, (2) prominent characteristics of modern egg production systems that necessitate further development and adoption of PLF technologies, (3) some examples of PLF tools or technologies for establishment of science-based production guidelines or applications in field operations, and finally (4) outlook of PLF for egg production. For the fundamental principles and elements of PLF, readers can refer to the opening paper by Berckmans (2017) in this issue. Disciplines Agriculture | Bioresource and Agricultural Engineering | Poultry or Avian Science Comments This article is from Animal Frontiers 7 (2017): 24–31, doi:10.2527/af.2017.0105. Posted with permission. This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/abe_eng_pubs/824 Evolution of the Egg Industry Egg production has undergone remarkable advancements over the past six decades. A recent life cycle analysis (LCA) study on the U.S. egg industry, conducted by the Egg Industry Center (Pelletier et al., 2014), revealed drastic reductions of 54–63% in total environmental footprints (greenhouse gases, acidification and eutrophication emissions) from 1960 to 2010. In the meantime, egg supply increased by 30%. These outcomes stemmed from advancements in poultry breeding and genetics, nutrition, disease prevention and control, housing equipment and environmental control, and utilization efficiency in feed and other natural resources as well as increased crop yields. For instance, during the period of 1960– 2010, laying hens in the USA showed a consistent increase of 1.16 extra eggs each year, i.e., 58 extra eggs per hen annually from 1960 to 2010. Feed conversion (FC) (kilogram of feed intake per kilogram of egg output) improved from 3.41 to 1.98 for the same period. Protecting the birds from the influence of seasonal climates has made their productivity much more consistent year-round. An example of maintaining relatively constant indoor temperature despite the largely fluctuating outside weather is illustrated in Figure 1. The same LCA study also identified two “hot spots” that have profound impact on environmental footprints of the operation, namely, feed efficiency and manure management, where further improvements should be focused on. For instance, while FC averaged 1.98, it ranged from 1.8 to 2.2 for the laying-hen flocks surveyed. Clearly, those operations with a poorer FC of 2.2 can particularly benefit from exercising some PLF principles and practices. While the egg industry enjoys these highly commendable advancements and always looks for new ways to provide the population nutritious and affordable protein at unprecedented efficiency, new challenges never stop emerging. Today, concerns over animal welfare ","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0105","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68980031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Precision livestock farming for pigs","authors":"E. Vranken, D. Berckmans","doi":"10.2527/AF.2017.0106","DOIUrl":"https://doi.org/10.2527/AF.2017.0106","url":null,"abstract":"To guarantee accurate and continuous monitoring of individual animals at a modern livestock farm, farmers nowadays need reliable and affordable technologies to assist them in performing daily management of tasks. The application of the principles and techniques of process engineering to livestock farming to monitor, model, and manage animal production is called precision livestock farming (PLF). Precision livestock farming seems like the only realistic way to support farmers and other stakeholders in the livestock production chain in the near future while at the same time coping with the rising demand for meat. Precision livestock farming is a series of practices aimed at increasing the farmer’s ability to keep contact with individual animals despite the growing intensification of livestock production. It aims to achieve economically, environmentally, and socially sustainable farming through the observation, behavioral interpretation, and control of the smallest possible group of animals. It enables farmers to reduce operational costs such as expenditures to feed, medication, and energy. Moreover, farmers can use PLF technologies to monitor animal health and welfare to ensure that animals live well and are free of diseases. Precision livestock farming systems aim to translate the output of the technology to useful information to the farmer. Commercial products need a combination of hardware complying with certain technical and safety standards in combination with software, a good user interface, a backup solution to store data, an auto-restart function in case of power failure, manual and help functions, and installers who can install and service the product, etc. Results and potential of PLF technology are mostly unknown to animal scientists, veterinarians, ethologists, etc. due to a lack of collaboration among different disciplines. However, there is no doubt that the combination of new technologies with biology offers great opportunities for the EU in terms of realizing and implementing directives as well as in economic and social terms. A lot of data are already automatically registered by the in-house control computers and collected on a farm computer. In practice, however, the pig farmers hardly use this information. As a result, they miss out on money because deviations in the production process are not noticed or noticed too late. However, the biggest challenge with PLF is to convert this growing amount of data into usable information so that, throughout the day, the farmer can use the relevant information directly to manage operations.","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0106","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68980096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Guarino, Tomas Norton, D. Berckmans, E. Vranken, D. Berckmans
{"title":"A blueprint for developing and applying precision livestock farming tools: A key output of the EU-PLF project","authors":"M. Guarino, Tomas Norton, D. Berckmans, E. Vranken, D. Berckmans","doi":"10.2527/AF.2017.0103","DOIUrl":"https://doi.org/10.2527/AF.2017.0103","url":null,"abstract":"","PeriodicalId":48645,"journal":{"name":"Animal Frontiers","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.2527/AF.2017.0103","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"68979707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}