Journal of Hydrology-Regional Studies最新文献

筛选
英文 中文
Enhancing water management in Northern European lowland chalk streams: A parsimonious, high-resolution hydrological model using groundwater level as a proxy for baseflow 加强北欧低地白垩溪流的水资源管理:使用地下水位作为基流替代物的简易高分辨率水文模型
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-19 DOI: 10.1016/j.ejrh.2024.102022
{"title":"Enhancing water management in Northern European lowland chalk streams: A parsimonious, high-resolution hydrological model using groundwater level as a proxy for baseflow","authors":"","doi":"10.1016/j.ejrh.2024.102022","DOIUrl":"10.1016/j.ejrh.2024.102022","url":null,"abstract":"<div><h3>Study region</h3><div>The River Frome, a chalk stream in West Dorset, UK.</div></div><div><h3>Study focus</h3><div>High-resolution hydrological models are required to integrate with the current wave of high-frequency data and advance our understanding of pollutant sources, pathways, and sinks. This presents several challenges in chalk streams, as their high-permeability and unique hydrogeological characteristics often leads to complex models that are overparameterized and computationally burdensome. In this article, we develop a novel and parsimonious modelling approach to describe the surface hydrology for a chalk stream in high resolution (15-minute frequency, ≤ 100 m cross-section spacing), using groundwater levels as a proxy for spring discharges.</div></div><div><h3>New hydrological insights for the region</h3><div>Our results show that chalk stream dry-weather flows can be simulated accurately and parsimoniously at high-resolution (Nash-Sutcliffe efficiency = 0.97, mean relative error = 2.86 %, for a five-year period). We also show that spring discharges are the dominant form of flow accretion in all seasons and are critical to dilute sewage treatment inputs during the ecological growing season, whilst runoff and quick-flow pathways in the river valley corridor contribute a small proportion to annual flow accretion (&lt; 5.2 %). Due to its simplicity and few parameters to calibrate, this modelling approach has broad applicability in lowland permeable catchments. Management implications include expeditious investigations of high-resolution freshwater quality responses to pollution and informing abstraction limits to sustain robust ecological conditions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of astronomical tide phases on urban flooding during rainstorms: Application to Macau 天文潮汐相位对暴雨期间城市内涝的影响:在澳门的应用
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-19 DOI: 10.1016/j.ejrh.2024.101998
{"title":"The influence of astronomical tide phases on urban flooding during rainstorms: Application to Macau","authors":"","doi":"10.1016/j.ejrh.2024.101998","DOIUrl":"10.1016/j.ejrh.2024.101998","url":null,"abstract":"<div><h3>Study region</h3><div>The study area is the western part of the Macau Peninsula in China, with an area of 4.06 km<sup>2</sup>.</div></div><div><h3>Study focus</h3><div>This study developed a coupled hydrological-hydraulic model that simulates the two-dimensional (2D) surface flow and one-dimensional (1D) drain pipe flow of compound inundation. The model was applied to Macau, China, as a study area, and the typhoon Mangkhut in 2018 was used as a case study to validate the model’s performance. Simulating compound inundation scenarios of extreme rainfall and astronomical tide and exploring the influence of astronomical tide on coastal urban inundation.</div></div><div><h3>New hydrological insights for the region</h3><div>Urban flood disasters are profoundly influenced by tidal levels, albeit the height of tides alone does not solely exacerbate the phenomenon. Rather, the phase of astronomical tides during rainfall also plays a crucial role in determining the severity of urban flooding. This research has revealed that when rainfall synchronizes with the recession phase of the spring tide, urban flooding conditions become acute, 17.66 % increase in total surface water volume for the scenario with the highest tidal level impact compared to the scenario with the lowest tidal level impact. This paper presents the response of coastal cities to the flooding process under different combined rainstorm-astronomical tide scenarios, to provide scientific guidance for disaster preparedness planning in coastal areas, and to improve the resilience of disasters.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy evaluation and comparison of GSMaP series for retrieving precipitation on the eastern edge of the Qinghai-Tibet Plateau 用于青藏高原东部边缘降水量检索的全球降水测绘卫星系列的精度评估和比较
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-19 DOI: 10.1016/j.ejrh.2024.102017
{"title":"Accuracy evaluation and comparison of GSMaP series for retrieving precipitation on the eastern edge of the Qinghai-Tibet Plateau","authors":"","doi":"10.1016/j.ejrh.2024.102017","DOIUrl":"10.1016/j.ejrh.2024.102017","url":null,"abstract":"<div><h3>Study Region</h3><div>Min River Basin on the eastern Qinghai-Tibet Plateau.</div></div><div><h3>Study Focus</h3><div>Precipitation is critical for hydrological processes, making accurate data essential for water management and flood forecasting. Satellite precipitation products offer valuable high-resolution spatiotemporal information, with the GSMaP series being widely used. However, comprehensive evaluations of different versions are limited. This study assesses the accuracy of Gauge and MVK products (versions 06, 07, and 08) across spatial and temporal scales and evaluates their performance in detecting precipitation events of varying intensities.</div></div><div><h3>New Hydrological Insights for the Study Region</h3><div>(1) GSMaP versions 06 and 07 exhibit higher detection rates for precipitation events, with POD values exceeding 0.8, while version 08 has a lower false alarm rate, with FAR values below 0.15. (2) GSMaP products are more successful in capturing precipitation events during the rainy season than the dry season. (3) With increasing elevation, the Gauge product consistently maintains a high hit rate and reduced false alarm rate, whereas the MVK product's hit rates improve. (4) For different rainfall intensities, GSMaP products more accurately detect moderate and heavy rain events, with the Gauge product outperforming the MVK product in terms of accuracy. These insights enhance the understanding of GSMaP product performance on eastern edge of the Qinghai-Tibet Plateau, aiding in improved water management practices.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using reanalysis precipitation data for developing intensity-duration-frequency curves in a poorly gauged city 利用再分析降水量数据绘制一个测量条件较差城市的降水强度-持续时间-频率曲线
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-19 DOI: 10.1016/j.ejrh.2024.102005
{"title":"Using reanalysis precipitation data for developing intensity-duration-frequency curves in a poorly gauged city","authors":"","doi":"10.1016/j.ejrh.2024.102005","DOIUrl":"10.1016/j.ejrh.2024.102005","url":null,"abstract":"<div><h3>Study region</h3><div>The Msimbazi River catchment traversing Dar es Salaam city in east-central Tanzania.</div></div><div><h3>Study focus</h3><div>The lack of high-resolution rainfall data in cities in developing countries hinders the development of suitable intensity–duration–frequency (IDF) curves for designing and evaluating hydraulic structures. Thus, this study investigated the potential of relatively high-resolution reanalysis precipitation data for developing IDF curves in the poorly gauged Msimbazi River catchment in Dar es Salaam city. The time series of hourly ERA5-Land reanalysis precipitation data were used to generate the annual maximum series at four selected points in the river catchment. These were subsequently bias-corrected using parameters derived from limited observed rainfall data. The bias-corrected annual maximum series of reanalysis precipitation (AMSRP) data were fitted with the best probability distribution functions, which were then used to estimate quantiles of IDF curves for various annual exceedance probabilities.</div></div><div><h3>New hydrological insights</h3><div>The findings revealed that uncorrected AMSRP data would have underestimated rainfall intensities in this region by a factor of two to six. Different areas in the Msimbazi River catchment have different rainfall distributions and IDF curves. Thus, no single set of IDF curves can represent rainfall intensities in the entire river catchment. Due to the potential of relatively high-resolution reanalysis precipitation data, designs and evaluations of hydraulic structures in poorly gauged cities are encouraged to use bias-corrected and location-specific IDF curves.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A parsimonious model for springs discharge reconstruction and forecast for drought management: Lessons from a case study in Central Italy 为干旱管理重建和预测泉水排放的简易模型:意大利中部案例研究的启示
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-18 DOI: 10.1016/j.ejrh.2024.102021
{"title":"A parsimonious model for springs discharge reconstruction and forecast for drought management: Lessons from a case study in Central Italy","authors":"","doi":"10.1016/j.ejrh.2024.102021","DOIUrl":"10.1016/j.ejrh.2024.102021","url":null,"abstract":"<div><h3>Study region</h3><div>Karst springs located in Central Apennine ridge (Central Italy), in the Tiber River basin.</div></div><div><h3>Study focus</h3><div>The assessment of water availability is a key issue in a water supply system because of increasing drought and water scarcity events. Analysing and predicting the dynamic behaviour of groundwater resources is challenging to conceptualize and model, especially in poorly-monitored systems. A parsimonious model based on linear regression between the monthly spring discharge time series and Standardized Precipitation Index is proposed. The model is conceived for management purposes and suitable for users with a limited background in modelling techniques, who can take advantage from an initial knowledge of the aquifers hydrological regime.</div></div><div><h3>New hydrological insights for the region</h3><div>The model developed for long-term monitored springs is used to reconstruct the historical groundwater hydrographs and to make predictions for poorly-monitored springs with similar properties, exploiting the “similarity principle”. Results highlight the notable performance of this approach, which represents a useful tool for overcoming the limitations in spring discharge monitoring networks. Moreover, the tool is used to test forecast performance enabling water managers to develop a monthly early-warning system fostering a sustainable water resource exploitation and limiting the critical issues of the water supply system, especially during drought periods. Results are discussed from the perspective of the water utilities entrusted to manage their resources in the study region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Changes of blue and green water in arid inland dissipation area based on coupled surface water and groundwater model 基于地表水和地下水耦合模型的干旱内陆消落区蓝水和绿水的变化
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-18 DOI: 10.1016/j.ejrh.2024.102010
{"title":"Changes of blue and green water in arid inland dissipation area based on coupled surface water and groundwater model","authors":"","doi":"10.1016/j.ejrh.2024.102010","DOIUrl":"10.1016/j.ejrh.2024.102010","url":null,"abstract":"<div><h3>Study region</h3><div>The Mainstream in the Tarim River Basin, Southern Xinjiang, China</div></div><div><h3>Study focus</h3><div>Climate change and human activities have significantly altered the water cycle, and water security evaluation and management are urgent. In arid and semi-arid areas, the assessment of blue and green water is particularly important. In this study, the MIKE SHE model is used to simulate the spatial and temporal changes of blue and green water resources in the mainstream of the Tarim River Basin (TRB) from 1990 to 2050 under land use and climate change conditions. The scarcity and vulnerability of blue-green water are introduced to evaluate the water security of the basin. The impacts of different land uses on blue-green water resources were also calculated according to the model zoning.</div></div><div><h3>New hydrological insights for the region</h3><div>The results indicate that from 1990 to 2050, blue water resources show a spatial pattern of gradual decrease from upstream to downstream. Compared to blue water, green water is dispersed more evenly over space. Future climatic scenarios will impact water security, as will changes in blue and green water security in terms of time and space. By comparing the influence of ecological water transport on the change of blue and green water before and after 2000, it was found that environmental water transport plays a certain role in improving the blue water scarcity in downstream of the TRB. The study is significant in maintaining regional water security and ecosystem stability.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of gridded precipitation datasets in mountainous terrains of Northwestern Mexico 墨西哥西北部山区网格降水数据集评估
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-18 DOI: 10.1016/j.ejrh.2024.102019
{"title":"Evaluation of gridded precipitation datasets in mountainous terrains of Northwestern Mexico","authors":"","doi":"10.1016/j.ejrh.2024.102019","DOIUrl":"10.1016/j.ejrh.2024.102019","url":null,"abstract":"<div><h3>Study region</h3><div>The complex mountainous terrains of the Sierra Madre Occidental in northwestern Mexico.</div></div><div><h3>Study focus</h3><div>Acquiring high-resolution precipitation data in regions with limited conventional rain gauge coverage poses significant challenges. Gridded precipitation (GP) datasets, including gauge-based, satellite, and reanalysis products, provide a potential solution, but their reliability in areas with complex terrain and intricate precipitation patterns remains uncertain. This study comprehensively evaluates the performance of four GP datasets—AORC, CHIRPS, Daymet, and ERA5—in estimating precipitation. The evaluation was conducted at a daily, monthly, and seasonal timescale, further analyzing extreme precipitation, the influence of elevation, and spatial averaging across hydrologic basins, using as reference the NERN rain gauge data from 2002 to 2004.</div></div><div><h3>New hydrological insights for the region</h3><div>Results indicate that Daymet and AORC are the most accurate GP datasets for daily and monthly timescales, respectively. All datasets improve in accuracy over longer timescales but face challenges during the wet summer monsoon months and extreme events, with Daymet performing relatively better. Terrain elevation had a minimal impact on overall dataset accuracy, though a slight improvement in precipitation detection was noted as elevation increased. This work provides valuable insights into the strengths and limitations of GP datasets in regions with complex terrain and orographically-forced convective precipitation, offering practical outcomes for climate and hydrologic studies in similar regions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrological processes in multi-layered aquifers of a karst watershed with coal mining activity: Insights from hydrochemistry and isotopes 有采煤活动的岩溶流域多层含水层的水文过程:水化学和同位素的启示
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-17 DOI: 10.1016/j.ejrh.2024.102016
{"title":"Hydrological processes in multi-layered aquifers of a karst watershed with coal mining activity: Insights from hydrochemistry and isotopes","authors":"","doi":"10.1016/j.ejrh.2024.102016","DOIUrl":"10.1016/j.ejrh.2024.102016","url":null,"abstract":"<div><h3>Study region</h3><div>The Laochang Karst watershed (LCKW) is located in eastern Yunnan Province, southwestern China. It is the representative karst area affected by coal-mining activities in southwestern China.</div></div><div><h3>Study focus</h3><div>Identifying hydrological processes of multi-layered aquifers in karst watersheds is challenging due to complex natural and anthropogenic processes. This study attempts to clarify the hydrological conceptual model of the LCKW using hydrochemistry and D, O, Sr, S, and C isotopes.</div></div><div><h3>New hydrological insights for the region</h3><div>Surface water and multi-layered groundwater have the hydrochemical types of SO<sub>4</sub>-Ca·Mg, HCO<sub>3</sub>·SO<sub>4</sub>-Ca, and HCO<sub>3</sub>-Ca. Meteoric water and condensate were the major recharge sources. The main processes dominating hydrochemical compositions consist of sulfide oxidative dissolution, carbonate dissolution, positive cation exchange, and agricultural activities. Elevated SO<sub>4</sub><sup>2−</sup> concentration in the mine water, river water and shallow coalbed water mainly originated from the oxidation of pyrite in the coal-bearing strata of the Longtan Formation. whereas the deeper layers and groundwater away from the mines were hardly contaminated by SO<sub>4</sub><sup>2−</sup> due to the presence of aquiclude. HCO<sub>3</sub><sup>−</sup> concentrations of surface water and multi-layered groundwater were mainly derived from carbonate dissolution and soil CO<sub>2</sub>, and mine water was also influenced by atmospheric CO<sub>2</sub>. Positive cation exchange contributed to increasing Na<sup>+</sup> concentration. Agricultural activities contributed NO<sub>3</sub><sup>−</sup>, Cl<sup>−</sup>, and K<sup>+</sup> ions in aquifers, especially near large karst fallout caves. A hydrological model of multi-layered aquifers in the LCKW was built based on the above results. These findings will provide valuable guidance for understanding the hydrological processes of complex karst watersheds worldwide.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatio-temporal heterogeneity and driving mechanism of ecosystem water use efficiency in the Loess Plateau, China 中国黄土高原生态系统用水效率的时空异质性及其驱动机制
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-17 DOI: 10.1016/j.ejrh.2024.102012
{"title":"Spatio-temporal heterogeneity and driving mechanism of ecosystem water use efficiency in the Loess Plateau, China","authors":"","doi":"10.1016/j.ejrh.2024.102012","DOIUrl":"10.1016/j.ejrh.2024.102012","url":null,"abstract":"<div><h3>Study region</h3><div>The Loess Plateau, China</div></div><div><h3>Study focus</h3><div>The trade-off between carbon uptake and water loss, characterized by ecosystem water use efficiency (WUE), deeply influences ecosystem sustainability. In this study, WUE was estimated based on GPP from the Moderate Resolution Imaging Spectroradiometer (MODIS) product and ET simulated by the Priestley Taylor Jet Propulsion Laboratory (PT-JPL) model. The emerging hot spot analysis (EHSA) was used to comprehensively examine the spatio-temporal heterogeneity of WUE. Additionally, the Geodetector model was employed to identify the main drivers of WUE and quantify the interactive effects of drivers on WUE, focusing on different vegetation types.</div></div><div><h3>New hydrological insights for the region</h3><div>Results indicated obvious spatial heterogeneity of WUE under different vegetation and hydro-climatic conditions. Significant increases in WUE occurred in sub-humid cropland and grassland areas that have experienced large-scale ecological restoration and agricultural intensification. By contrast, slight decreases in WUE were observed in semi-arid grassland areas, some of which were accompanied by intensifying cold spots. It was noteworthy that WUE in some hot spots with excessive vegetation coverage also showed a slight downward trend. Further, the WUE pattern in cropland/forests/grassland was dominated by the interaction of vegetation coverage (characterized by the Normalized Difference Vegetation Index, NDVI) and precipitation/air temperature/vapor pressure deficit, with NDVI playing a leading role and hydro-climatic drivers playing a supporting role.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote sensing insights into water allocation and evaporation challenges in the Hirmand River Basin, after the operation of Kamal Khan Dam 通过遥感洞察赫曼德河流域在卡玛尔汗大坝运行后面临的水资源分配和蒸发挑战
IF 4.7 2区 地球科学
Journal of Hydrology-Regional Studies Pub Date : 2024-10-17 DOI: 10.1016/j.ejrh.2024.101996
{"title":"Remote sensing insights into water allocation and evaporation challenges in the Hirmand River Basin, after the operation of Kamal Khan Dam","authors":"","doi":"10.1016/j.ejrh.2024.101996","DOIUrl":"10.1016/j.ejrh.2024.101996","url":null,"abstract":"<div><h3>Study Region</h3><div>The Hirmand River Basin is a vital transboundary river system, that originates in Afghanistan’s Hindu Kush Mountains and flows into the Sistan Depression, and encompassing the Chah Nimeh Reservoirs in Iran and the Godzareh Depression in Afghanistan.</div></div><div><h3>Study Focus</h3><div>The Kamal Khan Dam, constructed on the Hirmand River in Afghanistan, has significantly altered the downstream water direction and distribution between the Chah Nimeh Reservoirs and Godzareh Depression. Utilizing remote sensing techniques, particularly Landsat 8 satellite imagery and the FAO 56 PM as a evaporation retrieval method, the research focuses on evaluating changes in water allocation and evaporation rates in these regions over the past decade.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>The findings reveal that after operation of the Kamal Khan Dam, water allocation to the Chah Nimeh Reservoirs has drastically decreased, leading to a 54 % reduction in their average area from 2020–2023 compared to the previous years. Conversely, the Godzareh Depression, now receiving the redirected water, has experienced significantly higher evaporation rates, contributing to substantial water losses. These changes underscore the critical need for effective water management strategies to address the escalating water scarcity and hydrological imbalances in this arid region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142444928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信