{"title":"Quantitative characterization, spatiotemporal evolution, and analysis of driving factors of daily dry-wet abrupt alternation: A case study of the Ganjiang River Basin","authors":"","doi":"10.1016/j.ejrh.2024.102030","DOIUrl":"10.1016/j.ejrh.2024.102030","url":null,"abstract":"<div><h3>Study Region</h3><div>This study focuses on the Ganjiang River Basin, a major tributary of the Poyang Lake located in southern China.</div></div><div><h3>Study Focus</h3><div>With the growing frequency of extreme weather events driven by climate change, there is increased attention on compound disasters such as Dry-Wet Abrupt Alternation (DWAA). This study aims to quantify and define DWAA in the Ganjiang River Basin by developing and applying a DWAA Index (DWAAI) using a percentile threshold method. The objective is to investigate the spatiotemporal characteristics and patterns of DWAA in the region. Precipitation data from 12 meteorological stations were analyzed to track these events from 1970 to 2019.</div></div><div><h3>New Hydrological Insights For the region</h3><div>The results of this study provide new insights into DWAA dynamics in the Ganjiang River Basin. Key findings include: (i) The DWAAI effectively captures the extremes of Dry-Wet Abrupt Alternations, especially at the 1st and 99th percentiles; (ii) The basin experienced 37–48 dry-to-wet events (DtWs) during the study period, with higher frequencies observed in the central-eastern, western, and northern mountainous areas, and lower frequencies in the southern regions; (iii) Wet-to-dry events (WtDs) were less common than DtWs and exhibited a distinct spatial and temporal shift from the southern mountains toward the central basin; (iv) Temperature was identified as the dominant factor influencing DWAAI changes, while large-scale atmospheric patterns such as AO, ENSO, PDO, and Sunspot activity showed insignificant correlations. These findings offer critical insights for improving water resource management and climate adaptation efforts in the region.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting future evapotranspiration based on remote sensing and deep learning","authors":"","doi":"10.1016/j.ejrh.2024.102023","DOIUrl":"10.1016/j.ejrh.2024.102023","url":null,"abstract":"<div><h3>Study region</h3><div>The watersheds of the four flux sites in the United States were selected as the study areas for this research.</div></div><div><h3>Study focus</h3><div>This study validates the efficiency of Convolutional Long Short-Term Memory Network (ConvLSTM) models for site-scale <span><math><msub><mrow><mi>ET</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> prediction. We enhanced the ConvLSTM model by adding a Spatial Pyramid Pooling module (SPPM) and a Multi-head Self-Attention Module (MSA-Module), creating the Multi-head Self-Attention ConvLSTM (MSA-ConvLSTM) model, which we applied to predicting regional-scale actual evapotranspiration (<span><math><msub><mrow><mi>ET</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>). This study aims to investigate whether the MSA-ConvLSTM model can enhance the accuracy of predicting regional-scale <span><math><msub><mrow><mi>ET</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>, considering multiple feature variables. Furthermore, we evaluated different performance indicators, discussed possible reasons for errors in regional <span><math><msub><mrow><mi>ET</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> prediction, and conducted sensitivity analysis of the model characteristics.</div></div><div><h3>New hydrological insights for the region</h3><div>The MSA-ConvLSTM model accurately predicts the future state of <span><math><msub><mrow><mi>ET</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>. The average <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> was 0.81, which is 11.6 % and 5.5 % higher than those of the ConvLSTM and Self-Attention ConvLSTM (SA-ConvLSTM) models, respectively. The average RMSE is 11.94 mm/m, which is 21.5 % and 13.7 % lower than ConvLSTM and SA-ConvLSTM, respectively. The average MAE is 9.46 mm/m, which is 21.3 % and 13 % lower than ConvLSTM and SA-ConvLSTM, respectively. Incorporating of a multi-head self-attention module enhances the model’s capacity for comprehensive understanding of input data features. This improvement allows the model to better adapt to feature relationships at varying scales and angles, enhancing its representational capacity and enabling effective adaptation to complex environmental changes.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Groundwater-surface water exchanges in an alluvial plain in southern France subjected to pumping: A coupled multitracer and modeling approach","authors":"","doi":"10.1016/j.ejrh.2024.101995","DOIUrl":"10.1016/j.ejrh.2024.101995","url":null,"abstract":"<div><h3>Study region</h3><div>The study was conducted in an alluvial plain between the Rhône and the Ouvèze Rivers (in the southeast of France) extensively exploited for drinking water. The research area is characterized by significant groundwater-surface interactions influenced by groundwater pumping activities.</div></div><div><h3>Study focus</h3><div>The aim of this study is to enhance the understanding of interactions between rivers and alluvial aquifers by combined multi-tracer and numerical modeling approaches. Over an 18-month period, groundwater temperature, piezometric levels, and river surface water levels were continuously monitored. Field campaigns focused on conductivity, stable isotopes of water, and radon-222 activity concentration in both groundwater and surface water. Radon-222 was used to quantify water exchanges between the river and the aquifer. A MODFLOW model, calibrated using piezometric data and PEST, was employed to simulate groundwater flow and reactive transport of radon-222 using MT3DMS.</div></div><div><h3>New hydrological insights for the region</h3><div>The study reveals that river water recharges the aquifer, with radon-222 data delineating this recharge zone. The methodology extended the interpretation of periodic groundwater temperature signals to isotopic signals, allowing the identification of dispersivity and Darcy's velocity. The Ouvèze River was found to contribute approximately 55 % of the pumping water supply, alongside the Rhône. These findings provide valuable insights for sustainable water resource management, demonstrating the relevance of using natural tracers in scenarios where artificial tracers are impractical.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Identification of dominant drivers of streamflow spatiotemporal variations in typical mountainous areas in the Hexi Corridor, China","authors":"","doi":"10.1016/j.ejrh.2024.102024","DOIUrl":"10.1016/j.ejrh.2024.102024","url":null,"abstract":"<div><h3>Study region</h3><div>Typical mountain areas in the Hexi Corridor, China.</div></div><div><h3>Study focus</h3><div>Water security and ecosystem sustainability of arid inland river basins are highly dependent on upstream streamflow. However, due to the complex geographical environment and limited observation data in the study region, the attribution of spatiotemporal variations in streamflow influenced by climate change and/or human activities remains unclear. Here, we used partial least squares regression (PLSR) and the Budyko framework to unravel the dominant drivers of spatiotemporal variation in streamflow over the past 30 yr.</div></div><div><h3>New hydrological insight for the region</h3><div>Precipitation, topographic wetness index, slope, forest land, gross primary productivity, hydrological connectivity, soil organic carbon content, silt content, relative relief, <em>NDVI</em> and gravel content dominated spatial variation in streamflow. Temporal variation of streamflow was sensitive to precipitation and land surface. Specifically, increased precipitation and land surface alteration dominated the increase in streamflow in 50 % of the watersheds and the decrease in streamflow in 33 % of them, respectively. Further, land surface alteration was dominated by expansion of agricultural and built-up areas, weakened hydrological connectivity, increased landscape aggregation and forest cover. Controlling agricultural and built-up areas and the scale of afforestation, and focusing on the dynamics of hydrological connectivity and landscape patterns in the upstream reaches are imperative to maintain the security and sustainability of water resources in the arid inland river basins.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal desynchronization in the propagation from meteorological to soil moisture drought in the Loess Plateau, China","authors":"","doi":"10.1016/j.ejrh.2024.102025","DOIUrl":"10.1016/j.ejrh.2024.102025","url":null,"abstract":"<div><h3>Study Region</h3><div>The Loess Plateau (LP) of China</div></div><div><h3>Study Focus</h3><div>Meteorological drought (MD) would propagate to soil moisture drought (SMD) with spatiotemporal desynchronization. The spatial desynchronization between them has frequently been ignored in previous studies due to limitation of identified droughts, which did not consider their 3-dimensional (3D, i.e. longitude, latitude and time) properties. This study presents a 3D perspective on the spatiotemporal desynchronization in the propagation from meteorological to soil moisture drought in the the Loess Plateau (LP) of China, using an improved drought matching method. Event Synchronization (ES) is extended to determine temporal linkage of the two types of droughts and spatial connection is tested using overlapping area.</div></div><div><h3>New Hydrological Insights for the Region</h3><div>The results showed that: (1) the improved method is reasonable for identifying MDs that trigger SMDs, down to specific clusters; (2) 8 SMDs preceded MDs 1 month, while approximately 79 % of SMDs did not recover after the determination of MDs; (3) severity of MD is an impact factor on recovery lag, while antecedent soil moisture dominates onset lag with the relative importance of approximately 50 %; and (4) incompletely overlap in migration trajectory between the two types of droughts was mainly caused by temperature, followed by antecedent soil moisture and potential evapotranspiration, with relative importance of 55 %, 14 % and 12 %, respectively.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilizing the HBV-Light semi-distributed conceptual hydrological model to estimate groundwater recharge in the upstream part of the Awash River basin, Ethiopia","authors":"","doi":"10.1016/j.ejrh.2024.102018","DOIUrl":"10.1016/j.ejrh.2024.102018","url":null,"abstract":"<div><h3>Study region</h3><div>Upstream part of the Awash River basin, located central part of Ethiopia</div></div><div><h3>Study focus</h3><div>In this paper, we estimated the groundwater recharge using a semi-distributed, conceptual hydrological HBV-Light model. We used metrological and flow data from the Ethiopia Metrological Agency and the Ministry of Water and Energy, respectively. To simulate groundwater recharge over the reference period from 1988 to 2015 we merged these data with the conceptual HBV-Light rainfall-runoff model for calibration and validation. The average yearly precipitation from 1986 to 2015 was 1117 mm. Two calibration situations are examined to determine the level of uncertainty using a Monte Carlo approach with randomly generated parameter values.</div></div><div><h3>New hydrological insights for the region</h3><div>For a 20-year calibration period, several parameter values were observed and modeled flow equally well. Except for most parameters, good simulations were discovered with values that varied across vast ranges. A few parameters were well-defined (i.e., the optimum parameter values were within limited ranges). We also employed the regional sensitivity analysis (RSA) method to assess the sensitivity of model parameters and model. HBV-light and the generalized likelihood uncertainty estimation method were used for selecting its parameters. The results indicate that the calculated evapotranspiration is 79.5–80 % of the precipitation. Awash Melkakuntiro and Hombele’s calculated recharge rates are 220.8 mm/yr and 212.01 mm/yr, respectively. Thus, the average annual recharge for the study area is 216 (19.6 %) of the yearly precipitation. The study found that groundwater resource availability is strongly linked to current recharge rates. To improve the accuracy of groundwater recharge estimation, the HBV-Light model was employed. The study recommends enhancing data consistency and quality by expanding the hydrometeorological database and integrating real-time data for daily recharge calculations.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantifying propagation effects of climate and vegetation changes on evapotranspiration and streamflow signatures in Yarlung Tsangpo River Basin","authors":"","doi":"10.1016/j.ejrh.2024.102015","DOIUrl":"10.1016/j.ejrh.2024.102015","url":null,"abstract":"<div><h3>Study region</h3><div>Yarlung Tsangpo River basin (YTRB) went through significant increases in precipitation, temperature and leaf area index (LAI) during 1982–2018.</div></div><div><h3>Study focus</h3><div>This study aims to investigate the propagation effects of climate and vegetation change on actual evapotranspiration (AET) and streamflow signatures with simulation experiments using an improved hydrological model that couples a diagnostic evapotranspiration module.</div></div><div><h3>New hydrological insights</h3><div>The improved hydrological model performs well in simulating streamflow, actual evapotranspiration and most streamflow signatures in six subcatchments of upper Nuxia region of YTRB (e.g. median Nash-Sutcliffe Efficiency of daily streamflow larger than 0.72). Changes in AET and streamflow are dominated by the long-term increase in precipitation (P), followed by considerable influence from the increase in LAI and marginal influence from the increase in temperature. Increases in both P and LAI have increased AET but caused wetting and drying effects on streamflow, respectively. LAI-induced increase in transpiration and interception evaporation is partly offset by the decrease in soil evaporation, resulting in marginal changes in AET. Subsequently, changes in streamflow signatures are amplified when propagating from AET to streamflow signatures, especially for those reflecting frequency and duration. This study advanced the understanding of the propagation effect of climate and vegetation variables on AET and streamflow signatures.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spatiotemporal patterns of pH related to streamflow variability, drought conditions, and bedrock lithology in acid sensitive streams within a humid, subtropical catchment: Mulberry River, Arkansas, USA","authors":"","doi":"10.1016/j.ejrh.2024.101992","DOIUrl":"10.1016/j.ejrh.2024.101992","url":null,"abstract":"<div><h3>Study region</h3><div>Mulberry River, Arkansas, USA</div></div><div><h3>Study focus</h3><div>Low alkalinity streams within siliciclastic dominated catchments like the Mulberry River in the south-central United States experience episodic acidification. Since 2009, reaches of the Mulberry River have been classified as impaired due to low pH. We hypothesize that if pH time series patterns are similar among tributaries, external watershed factors like seasonal weather may be related to low stream pH. We investigated pH variability in the Mulberry River watershed including changepoint detection analysis. Patterns of pH and changepoints were compared with streamflow variability and drought conditions using Palmer Drought Severity Index (PDSI).</div></div><div><h3>New hydrological insights for the region</h3><div>Changes in pH were near synchronous and similar magnitude across the study area, despite observed increases in median tributary pH from east to west. From the comparison of pH time series and PDSI, low pH values tended to occur during more negative PDSI, i.e. drier periods. The specific mechanisms driving low pH variability remain elusive, but we infer low stream pH is influenced, in part, by seasonal weather variability leading to drier watershed conditions and lower pH. The spatial variability of median pH values from east to west, though, are more related to spatial variability in bedrock lithology. We hypothesize other acid-sensitive streams in the region likely share similar pH behavior and with low pH occurring during drier periods.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142534610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assessing the influences of future water development projects in Tekeze-Atbara-Setit basin on the Nile River inflow at Aswan, Egypt","authors":"","doi":"10.1016/j.ejrh.2024.102007","DOIUrl":"10.1016/j.ejrh.2024.102007","url":null,"abstract":"<div><h3>Study region</h3><div>The Tekeze-Atbara-Setit (TAS) basin as a portion of the Eastern Nile Basin (ENB) in Africa.</div></div><div><h3>Study focus</h3><div>ENB consists of four sub-basins; one of them is the Tekeze-Atbara-Setit basin. TAS basin is subject to future water development projects, including irrigation projects and hydropower dams. Potential impacts of these projects need to be assessed regarding the inflow and hydroelectric generation at Egypt's High Aswan Dam (HAD).</div></div><div><h3>New hydrological insights for the region</h3><div>Two models are coupled offline; The Soil Water Assessment Tool (SWAT) model and HEC-Reservoir Simulation Model (HEC-ResSim). Base-case scenario is created without the expected future projects, in addition to five additional scenarios representing hydropower and irrigation projects. The maximum annual inflow at HAD declines by 1.6 km<sup>3</sup> in the hydropower scenarios, while the produced power at HAD descends by 9.5 %. The maximum reduction in the annual inflow for hydropower and irrigation projects scenario at HAD is 4.63 km<sup>3</sup> and 35.2 % for power reduction. Finally, the proposed future development project in TAS basin will have negative impacts on the flow, and generated hydropower at HAD in Egypt.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impacts of external factors in salinity patterns via numerical modeling along the Scheldt Estuary, Belgium","authors":"","doi":"10.1016/j.ejrh.2024.102026","DOIUrl":"10.1016/j.ejrh.2024.102026","url":null,"abstract":"<div><h3>Study region:</h3><div>The Scheldt Estuary in Belgium</div></div><div><h3>Study focus:</h3><div>Understanding the mechanisms that control salt intrusion in estuaries is crucial due to its significant impact on the ecological environment and the water resource potential of estuaries. This study utilizes the Mike11 model to perform discharge (Q), water level (WL), and salinity (S) simulations in the reference and three future scenarios with sea level (SL) rise and Q reduction. A comparative analysis is conducted to evaluate the impact of individual and combined external factors (Q and WL) in the high-risk scenario S2.</div></div><div><h3>New hydrological insights for the regions:</h3><div>Results demonstrate that the midstream S is more sensitive to climate change compared to the upstream, leading to a transition of dominance from the freshwater zone to the mesohaline zone. The temporal evolution of S longitudinal structure exhibits significant variations throughout the year, showing increasing saltwater intrusion distance as the scenario intensify, particularly in seasonally low river flow period. It is also found that the combined effects of external factors on variable S demonstrate complex interactions, yielding varying sensitivities across different regions, rather than simply being the sum of individual factor impacts. Additionally, the correlations analysis indicates robust negative associations between upstream Q and S, and intricate and weak positive relationships between downstream WL and S.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":null,"pages":null},"PeriodicalIF":4.7,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142535147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}