基于可解释的人工智能量化大派山总初级生产力的热液驱动动力学

IF 5 2区 地球科学 Q1 WATER RESOURCES
Shaowei Ning , Lichang Xu , Xiaoyan Xu , Yuliang Zhou , Yuliang Zhang , Shengyi Zhang , Rujian Long , Juliang Jin , Bhesh Raj Thapa
{"title":"基于可解释的人工智能量化大派山总初级生产力的热液驱动动力学","authors":"Shaowei Ning ,&nbsp;Lichang Xu ,&nbsp;Xiaoyan Xu ,&nbsp;Yuliang Zhou ,&nbsp;Yuliang Zhang ,&nbsp;Shengyi Zhang ,&nbsp;Rujian Long ,&nbsp;Juliang Jin ,&nbsp;Bhesh Raj Thapa","doi":"10.1016/j.ejrh.2025.102797","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The study area is the Ta-Pieh Mountains, located in central China at the northern margin of the East Asian monsoon region.</div></div><div><h3>Study focus</h3><div>This study integrates multi-source remote-sensing and meteorological data (2000 – 2022) to investigate the hydrothermal-driven dynamics of Gross Primary Productivity (GPP). We applied Theil–Sen trend analysis, Mann–Kendall tests, and least-squares cross-wavelet analysis to assess spatiotemporal variations in GPP and climate variables. A per-pixel sliding-window modeling framework was developed using four tree-ensemble algorithms—Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Category Boosting (CatBoost). TreeSHAP was employed to quantify the relative contributions of temperature, precipitation, Root-Zone Soil Moisture (RZSM), and Vapor-Pressure Deficit (VPD) to GPP.</div></div><div><h3>New hydrological insights for the region</h3><div>Results show that temperature consistently dominates GPP variability, with VPD contributions closely tracking temperature fluctuations. Precipitation exhibits a one-month lagged effect on GPP, while reduced precipitation and lower RZSM strongly limit carbon uptake during droughts, exemplified by the 2019 autumn drought. The sliding-window framework achieved high predictive accuracy and delineated the spatiotemporal influence of hydrothermal drivers across different climate scenarios. These findings highlight the critical role of hydrothermal variability in regulating ecosystem carbon uptake and provide a transferable toolkit for vegetation-climate interaction analysis and ecosystem management in mountainous and transitional regions.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"62 ","pages":"Article 102797"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying hydrothermal-driven dynamics of gross primary productivity in the Ta-Pieh mountains based on explainable artificial intelligence\",\"authors\":\"Shaowei Ning ,&nbsp;Lichang Xu ,&nbsp;Xiaoyan Xu ,&nbsp;Yuliang Zhou ,&nbsp;Yuliang Zhang ,&nbsp;Shengyi Zhang ,&nbsp;Rujian Long ,&nbsp;Juliang Jin ,&nbsp;Bhesh Raj Thapa\",\"doi\":\"10.1016/j.ejrh.2025.102797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>The study area is the Ta-Pieh Mountains, located in central China at the northern margin of the East Asian monsoon region.</div></div><div><h3>Study focus</h3><div>This study integrates multi-source remote-sensing and meteorological data (2000 – 2022) to investigate the hydrothermal-driven dynamics of Gross Primary Productivity (GPP). We applied Theil–Sen trend analysis, Mann–Kendall tests, and least-squares cross-wavelet analysis to assess spatiotemporal variations in GPP and climate variables. A per-pixel sliding-window modeling framework was developed using four tree-ensemble algorithms—Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Category Boosting (CatBoost). TreeSHAP was employed to quantify the relative contributions of temperature, precipitation, Root-Zone Soil Moisture (RZSM), and Vapor-Pressure Deficit (VPD) to GPP.</div></div><div><h3>New hydrological insights for the region</h3><div>Results show that temperature consistently dominates GPP variability, with VPD contributions closely tracking temperature fluctuations. Precipitation exhibits a one-month lagged effect on GPP, while reduced precipitation and lower RZSM strongly limit carbon uptake during droughts, exemplified by the 2019 autumn drought. The sliding-window framework achieved high predictive accuracy and delineated the spatiotemporal influence of hydrothermal drivers across different climate scenarios. These findings highlight the critical role of hydrothermal variability in regulating ecosystem carbon uptake and provide a transferable toolkit for vegetation-climate interaction analysis and ecosystem management in mountainous and transitional regions.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"62 \",\"pages\":\"Article 102797\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581825006263\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581825006263","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0

摘要

研究区域研究区域是位于中国中部东亚季风区北缘的大派山脉。本研究综合多源遥感和气象资料(2000 - 2022),探讨了热液驱动的总初级生产力(GPP)动态变化。我们应用Theil-Sen趋势分析、Mann-Kendall检验和最小二乘交叉小波分析来评估GPP和气候变量的时空变化。使用随机森林(RF)、极端梯度增强(XGBoost)、光梯度增强机(LightGBM)和类别增强(CatBoost)四种树集成算法开发了一个逐像素滑动窗口建模框架。利用TreeSHAP量化了温度、降水、根区土壤湿度(RZSM)和蒸汽压差(VPD)对GPP的相对贡献。结果表明,温度始终主导着GPP的变化,VPD的贡献与温度波动密切相关。降水对GPP表现出一个月的滞后效应,而降水减少和RZSM降低强烈限制了干旱期间的碳吸收,2019年秋季干旱就是例证。滑动窗口框架具有较高的预测精度,描绘了不同气候情景下热液驱动因素的时空影响。这些发现强调了热液变率在调节生态系统碳吸收中的关键作用,并为山区和过渡地区的植被-气候相互作用分析和生态系统管理提供了可转移的工具包。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying hydrothermal-driven dynamics of gross primary productivity in the Ta-Pieh mountains based on explainable artificial intelligence

Study region

The study area is the Ta-Pieh Mountains, located in central China at the northern margin of the East Asian monsoon region.

Study focus

This study integrates multi-source remote-sensing and meteorological data (2000 – 2022) to investigate the hydrothermal-driven dynamics of Gross Primary Productivity (GPP). We applied Theil–Sen trend analysis, Mann–Kendall tests, and least-squares cross-wavelet analysis to assess spatiotemporal variations in GPP and climate variables. A per-pixel sliding-window modeling framework was developed using four tree-ensemble algorithms—Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Category Boosting (CatBoost). TreeSHAP was employed to quantify the relative contributions of temperature, precipitation, Root-Zone Soil Moisture (RZSM), and Vapor-Pressure Deficit (VPD) to GPP.

New hydrological insights for the region

Results show that temperature consistently dominates GPP variability, with VPD contributions closely tracking temperature fluctuations. Precipitation exhibits a one-month lagged effect on GPP, while reduced precipitation and lower RZSM strongly limit carbon uptake during droughts, exemplified by the 2019 autumn drought. The sliding-window framework achieved high predictive accuracy and delineated the spatiotemporal influence of hydrothermal drivers across different climate scenarios. These findings highlight the critical role of hydrothermal variability in regulating ecosystem carbon uptake and provide a transferable toolkit for vegetation-climate interaction analysis and ecosystem management in mountainous and transitional regions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Hydrology-Regional Studies
Journal of Hydrology-Regional Studies Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
6.70
自引率
8.50%
发文量
284
审稿时长
60 days
期刊介绍: Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信