Rhizosphere最新文献

筛选
英文 中文
Discovery of pharmaceutical compounds in endophytic fungi from mangrove trees 从红树林内生真菌中发现药物化合物
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-11-08 DOI: 10.1016/j.rhisph.2024.100989
Siriluck Iamtham , Anyalak Wachirachaikarn , Kathawut Sopalun , Nongpanga Jarussophon
{"title":"Discovery of pharmaceutical compounds in endophytic fungi from mangrove trees","authors":"Siriluck Iamtham ,&nbsp;Anyalak Wachirachaikarn ,&nbsp;Kathawut Sopalun ,&nbsp;Nongpanga Jarussophon","doi":"10.1016/j.rhisph.2024.100989","DOIUrl":"10.1016/j.rhisph.2024.100989","url":null,"abstract":"<div><div>Mangrove forest is a unique wetland ecosystem that is highly productive and provides an environment for a variety of microorganisms. Endophytic fungi derived from mangrove plants provide the plants with protection from adverse environmental conditions, while also allowing the fungi to produce valuable bioactive compounds. The present study sampled 11 mangrove trees and isolated, screened, and identified the potent endophytic fungi and their bioactive substances showing anti-pathogenic, anti-mutagenic and antioxidant activities, while the endophytes were investigated for their enzymatic potential. In total, 47 endophytic fungi were isolated from the leaves (36) and stems (11) of the host plants and all isolates were tested for antagonistic activities against selected plant pathogens. Based on the results, isolates BgS-04 and BcL-05 had the highest anti-pathogenic activities against <em>Curvularia</em> sp., <em>Fusarium</em> sp., and <em>Colletotrichum</em> sp. Therefore, the ethyl acetate crude extracts from these two fungi were further investigated for their antioxidant and anti-mutagenic activities and their phenolic compound contents, based on phytochemical analysis. Based on the results, the crude extracts of BgS-04 and BcL-05 contained 5.24 and 4.8 mg gallic acid equivalent/g of total phenolic compounds, respectively, and had antioxidant activity (half maximal inhibitory concentration) levels of 7.4 and 4.26 mg/mL, respectively. The preliminary qualitative phytochemical analysis of the fungal crude extracts identified tannins and coumarins. The anti-mutagenic activity levels of BgS-04 and BcL-05 against the mutagenic compounds, Trp-P-1 and DMBA, were determined using the Ames test, which revealed that the crude extracts of BgS-04 and BcL-05 had moderate-to-high antimutagenic potential against TA98 and TA100.</div><div>All 47 endophytic isolates were assessed for their potential role in producing extracellular enzyme; they were capable of producing protease (53%), pectinase (28%), amylase (26%) and cellulase (19%) but none of them produced lipase. Among the isolates, RmL-01 derived from the leaves of <em>Rhizophora mucronata</em> had the significantly highest amylase production. Maximum amylase production (141.2 U/mL) was observed at 30 °C, pH 7.0 and 120 h of incubation time. Molecular identification of the isolates BgS-04, BcL-05 and RmL-01 using nuclear ribosomal DNA internal transcribed spacer sequences revealed that they were <em>Pestalotiopsis parva</em>, <em>Collectotrichum perseae</em>, and <em>Aspergillus oryzae</em>, respectively, with high bootstrap support. It was concluded that the distinct groups of mangrove endophytes were potential sources of novel and valuable bio-based compounds with impressive anti-plant pathogen, anti-mutagenic, and antioxidant activities and capable of producing multi-industrial enzyme cocktails that might be important and useful for biotechnological applications.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100989"},"PeriodicalIF":3.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soil total phosphorus mediate the assembly processes of rhizosphere microbial communities of ficus species in a tropical rainforest 土壤总磷介导热带雨林中榕树根瘤微生物群落的组装过程
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-30 DOI: 10.1016/j.rhisph.2024.100986
Yingying Wang , Gang Wang , Zhiming Zhang , Shangwen Xia , Xiaodong Yang
{"title":"Soil total phosphorus mediate the assembly processes of rhizosphere microbial communities of ficus species in a tropical rainforest","authors":"Yingying Wang ,&nbsp;Gang Wang ,&nbsp;Zhiming Zhang ,&nbsp;Shangwen Xia ,&nbsp;Xiaodong Yang","doi":"10.1016/j.rhisph.2024.100986","DOIUrl":"10.1016/j.rhisph.2024.100986","url":null,"abstract":"<div><div>Revealing the assembly processes of plant rhizosphere microbial communities and the underlying influencing factors is essential for understanding the biodiversity and function of forest ecosystem. However, it remains unclear how deterministic and stochastic processes shape community structure and their relative importance in phosphorus-limited tropical environments. Here, we investigated the diversity, composition, and assembly processes of rhizosphere microbial communities of <em>Ficus</em> species in the Xishuangbanna region of southwest China, using methods such as high-throughput sequencing, variance partitioning analysis and null model analysis. We found that the community assembly processes of bacteria and fungi were primarily dominated by deterministic processes, with the fungal group being more deterministic than the bacteria group. Soil total phosphorus (TP) was the primary determinant of the composition and assembly of the rhizosphere microbial community, explaining 12.58% and 21.35% of the compositional variation in bacterial and fungal communities, respectively, and accounting for 14% of the microbial community assembly, but has a minor impact on their alpha diversity. This study highlights the distinct environmental driving factors of community composition and community assembly. The exposed positive relationship between soil TP and microbial deterministic process has inspiration for link of microbial community functions to soil function and sustainable forest management.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100986"},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142571535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The overlooked salt: Impact of dark septate endophytes on alfalfa at varying sodium sulfate levels 被忽视的盐不同硫酸钠含量下暗色隔膜内生菌对紫花苜蓿的影响
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-30 DOI: 10.1016/j.rhisph.2024.100987
Ying Ren , Yinli Bi , Jiapeng Kang
{"title":"The overlooked salt: Impact of dark septate endophytes on alfalfa at varying sodium sulfate levels","authors":"Ying Ren ,&nbsp;Yinli Bi ,&nbsp;Jiapeng Kang","doi":"10.1016/j.rhisph.2024.100987","DOIUrl":"10.1016/j.rhisph.2024.100987","url":null,"abstract":"<div><div>Sodium sulfate (Na<sub>2</sub>SO<sub>4</sub>) is one sodium salt extensively found in saline soils; in certain regions, it is the dominant salt present. Dark septate endophytes (DSE) are competent in enhancing plants’ resistance to stressed environments. Nevertheless, little is known about the role of DSE in enhancing plant tolerance to Na<sub>2</sub>SO<sub>4</sub>. This study examined DSE growth and its impacts on alfalfa plants exposed to varying Na<sub>2</sub>SO<sub>4</sub> concentrations (0%, 0.15%, 0.3%, and 0.45% (w/w)). Our findings revealed that DSE can thrive even in salt-stress environments. On the 8<sup>th</sup> day of cultivation, their biomass reached the highest level under 0.45% salt concentration. Moreover, DSE successfully colonized alfalfa roots and significantly enhanced plant growth and development across the various salt gradients. Notably, DSE made the highest contribution 68% to the total biomass of alfalfa at 0.45% salt concentration. Meanwhile, DSE significantly decreased the presence of root’s Na<sup>+</sup> across varying salt gradients. Additionally, DSE significantly increased catalase (CAT) activity at salt concentrations of 0.3% and 0.45%. Our study also revealed strong positive correlations of plant biomass with the root index, root’s K<sup>+</sup> content, and K<sup>+</sup>/Na<sup>+</sup> ratio, and strong negative correlations of plant biomass with root’s Na<sup>+</sup> content and soil’s Na<sup>+</sup> and SO<sub>4</sub><sup>2−</sup> contents. Structural equation modeling (SEM) demonstrated that DSE indirectly enhanced plant’s shoot biomass under various salt stresses via increasing root length, decreasing root’s Na<sup>+</sup> content, and raising CAT activity, while salt indirectly reduced plant’s shoot weight via reducing root length or increasing root’s Na<sup>+</sup> content or exerted a direct negative effect on plant shoot biomass. Thus, DSE are instrumental in bolstering the salt tolerance of plants, which holds strategic importance for the management of saline-alkali soils.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100987"},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142586309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic resistance to Fusarium wilt shapes rhizospheric beneficial microbiota in four banana cultivars 四种香蕉栽培品种对镰刀菌枯萎病的遗传抗性塑造了根瘤有益微生物群
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-30 DOI: 10.1016/j.rhisph.2024.100988
Cristina M. Troya , Lucas W. Mendes , Marileide M. Costa , Everlon Cid Rigobelo , Ludwig H. Pfenning , Victor Hugo Buttros , Joyce Dória
{"title":"Genetic resistance to Fusarium wilt shapes rhizospheric beneficial microbiota in four banana cultivars","authors":"Cristina M. Troya ,&nbsp;Lucas W. Mendes ,&nbsp;Marileide M. Costa ,&nbsp;Everlon Cid Rigobelo ,&nbsp;Ludwig H. Pfenning ,&nbsp;Victor Hugo Buttros ,&nbsp;Joyce Dória","doi":"10.1016/j.rhisph.2024.100988","DOIUrl":"10.1016/j.rhisph.2024.100988","url":null,"abstract":"<div><div>This study explores the dynamics of bacterial communities in the bulk soil, rhizosphere, and endosphere of banana plants, focusing on variations among cultivars with differing levels of genetic resistance to <em>Fusarium</em> wilt. Four banana cultivars were examined: one resistant (P), one moderately susceptible (PT), and two susceptible (W and M). Using 16S rDNA sequencing, we analyzed the bacterial community structures in these habitats. Results showed significant differences in bacterial communities across the three habitats and among the cultivars, with the endosphere communities being the most distinct. The rhizosphere and bulk soil communities exhibited more similarities, likely due to the soil microbiome's influence on the rhizosphere. Resistant cultivars (PT and P) displayed unique bacterial communities, with notable taxa such as <em>Burkholderia</em>, <em>Leifsonia</em>, and <em>Marmoricola</em> in the rhizosphere, known for their antagonistic properties against <em>Fusarium oxysporum</em>. Although the most abundant taxa are not the only ones influencing disease suppression, the susceptible cultivars (W and M) were dominated by genera such as <em>Reyranella</em> and <em>Mucilaginibacter</em>, which are yet to be described as potential biocontrol agents against <em>Fusarium</em> wilt. The endosphere of resistant cultivars also featured beneficial genera like <em>Amycolatopsis</em> and <em>Achromobacter</em>, known for their roles in plant growth promotion and disease resistance. The findings underscore the importance of plant genotype and soil type in shaping the rhizosphere microbiome, with specific microbial taxa associated with resistance to <em>Fusarium</em>. These insights suggest a potential for developing targeted microbial-based strategies to enhance disease resistance and overall plant health. The study highlights key microbial players that could be leveraged for biological control and improved management of <em>Fusarium</em> wilt in banana cultivation. This research advances our understanding of plant-microbe interactions and their implications for sustainable agriculture, particularly in combating soilborne pathogens.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100988"},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142698582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pb pollution altered bacterial community assembly and predicted functions in aggregate-size fractions of agricultural soil near a smelter 铅污染改变了冶炼厂附近农业土壤中聚合体大小部分的细菌群落组合和预测功能
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-29 DOI: 10.1016/j.rhisph.2024.100985
Xuedong Chen , Ying Zhu , Lin Tang , Kongyang Wu , Jiayi Liu , Yihan Yang
{"title":"Pb pollution altered bacterial community assembly and predicted functions in aggregate-size fractions of agricultural soil near a smelter","authors":"Xuedong Chen ,&nbsp;Ying Zhu ,&nbsp;Lin Tang ,&nbsp;Kongyang Wu ,&nbsp;Jiayi Liu ,&nbsp;Yihan Yang","doi":"10.1016/j.rhisph.2024.100985","DOIUrl":"10.1016/j.rhisph.2024.100985","url":null,"abstract":"<div><div>In order to investigate the impact of Pb smelter pollution on bacterial community structure, diversity and function at the microenvironment scale, the maize rhizosphere soils subjected to long-term (over 20 years) Pb smelter pollution were collected, and bacterial communities and putative functions in different aggregate-size fractions were identified by 16S rRNA sequencing, KEGG and FAPROTAX. The results showed that Pb pollution significantly diminished bacterial diversity, and prompted a shift in the bacterial communities toward more oligotrophic taxa, including Firmicutes, Chloroflexi, and Gemmatimonadetes. Furthermore, the functional subcategories related to cell motility and energy metabolism, as well as the functional groups involved in carbon (C), nitrogen (N), and sulfur (S) cycles, exhibited a marked decline under Pb pollution. At the aggregate scale, distinct differences were observed in the composition of bacterial communities across silt and clay (&lt;250 μm), micro-aggregates (250–1000 μm), and macro-aggregates (1000–2000 μm and &gt;2000 μm) in uncontaminated soils. However, Pb pollution disrupted these original distinctions among bacterial communities in various aggregate-size fractions, with a decreased abundance of dominant Proteobacteria and an increased abundance of Firmicutes in large aggregates. While the differences in bacterial functional groups in aggregate-size fractions were also detected. The functional groups associated with C and N cycles were significantly enriched in the macro-aggregates (1000–2000 μm) in uncontaminated soils. However, similar with the change of bacterial community structure, most functional groups (except for chemoheterotrophy) in aggregate-size fractions exhibited no significant differences under Pb exposure. Our results suggested that Pb pollution altered bacterial community structure and predicted functions at the aggregate level, and showed greater negative effects on bacterial functions in macro-aggregates (1000–2000 μm). This study can provide a new perspective for the influence of Pb smelter pollution on soil aggregate microenvironment.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100985"},"PeriodicalIF":3.4,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation between plant morphological traits and water potential exhibits drought avoidance in Chrysopogon zizanioides Chrysopogon zizanioides 植物形态特征与水势显示的抗旱性之间的相关性
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-26 DOI: 10.1016/j.rhisph.2024.100980
Suriya Prakash Ganesan , David Boldrin , Anthony Kwan Leung
{"title":"Correlation between plant morphological traits and water potential exhibits drought avoidance in Chrysopogon zizanioides","authors":"Suriya Prakash Ganesan ,&nbsp;David Boldrin ,&nbsp;Anthony Kwan Leung","doi":"10.1016/j.rhisph.2024.100980","DOIUrl":"10.1016/j.rhisph.2024.100980","url":null,"abstract":"<div><div>Plant acclimation to drought involves morphological changes such as leaf shrinkage and root elongation. We sought correlations between drought acclimated plant morphological traits and water potential of leaf (<span><math><mrow><msub><mi>ψ</mi><mi>L</mi></msub></mrow></math></span>) and root (<span><math><mrow><msub><mi>ψ</mi><mi>R</mi></msub></mrow></math></span>), which are limitedly available. Leaves and roots of <em>Chrysopogon zizan</em><em>i</em><em>oides</em> L. (vetiver) grown for different periods (3, 4 and 5 months) in biochar amended sandy soil were sampled at a soil water potential (<span><math><mrow><msub><mi>ψ</mi><mi>S</mi></msub></mrow></math></span>) representing drought condition. Morphological traits including leaf area, root diameter and root length were determined to correlate with <span><math><mrow><msub><mi>ψ</mi><mi>L</mi></msub></mrow></math></span> and <span><math><mrow><msub><mi>ψ</mi><mi>R</mi></msub></mrow></math></span>. Leaf area and root length increased with increasing growth period, but root diameter remained largely constant. Leaf area and <span><math><mrow><msub><mi>ψ</mi><mi>L</mi></msub></mrow></math></span> was positively and linearly correlated. Root diameter and root length displayed a contrasting response with <span><math><mrow><msub><mi>ψ</mi><mi>R</mi></msub></mrow></math></span>; lower <span><math><mrow><msub><mi>ψ</mi><mi>R</mi></msub></mrow></math></span> was measured in larger root diameters and shorter root lengths. Vetiver grass avoided the drought stress by increasing their root length, which will benefit the use of this species for soil bioengineering. The proliferation of roots to deeper soil depths could stabilise soil sliding and at the same time survive under drought conditions.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100980"},"PeriodicalIF":3.4,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential recruitment of root bacterial community by inoculated inland spiny and spinless cactus in response to salinity stress 接种内陆刺仙人掌和无刺仙人掌的根部细菌群落对盐度胁迫的响应差异
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-25 DOI: 10.1016/j.rhisph.2024.100984
Ameni Ben Zineb , Mariem Zakraoui , Imane Bahlouli , Fatma Karray , Asma Ben Salem , Ahmed Mliki , Stephan Declerck , Mahmoud Gargouri
{"title":"Differential recruitment of root bacterial community by inoculated inland spiny and spinless cactus in response to salinity stress","authors":"Ameni Ben Zineb ,&nbsp;Mariem Zakraoui ,&nbsp;Imane Bahlouli ,&nbsp;Fatma Karray ,&nbsp;Asma Ben Salem ,&nbsp;Ahmed Mliki ,&nbsp;Stephan Declerck ,&nbsp;Mahmoud Gargouri","doi":"10.1016/j.rhisph.2024.100984","DOIUrl":"10.1016/j.rhisph.2024.100984","url":null,"abstract":"<div><div>In the field of innovative challenges, it is essential to incorporate microorganisms into agricultural practices that promote and improve plant growth and health, particularly under conditions of salinity stress. This work elucidated the response of two <em>Opuntia ficus-indica</em> cultivars (spiny, <em>Gialla</em> and spineless, <em>Rossa</em>) inoculated inland with a coastal cactus rhizospheric soil (<em>Opuntia littoralis</em>) under NaCl treatment. The two cultivars reacted differently to salinity stress. The cladodes and roots of the <em>Rossa</em> cultivar were sensitive to salinity and accumulated both Na<sup>+</sup> and Cl<sup>−</sup>. In contrast, the <em>Gialla</em> cultivar showed Na <sup>+</sup> exclusion from the cladodes and root growth was unaffected by salinity. The diversity, richness, and correlation networks of root compartments bacterial communities were mainly determined while the cactus cultivar was subjected to salinity stress. Different subsets of key soil bacteria taxa were selected by the root systems of each cultivar after exposure to salinity. Our results highlight the importance of the rhizosphere of endemic coastal plants in improving plant resistance to salinity stress, particularly in the spiny cultivar compared to the spineless cultivar. The microbiome networks provide solid evidence that each cultivar adapts its bacterial community composition and interactions in response to salinity.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100984"},"PeriodicalIF":3.4,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Management impacts rhizosphere composition and gene expression in vineyards 管理对葡萄园根瘤菌组成和基因表达的影响
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-24 DOI: 10.1016/j.rhisph.2024.100981
Maria Tartaglia, Monica Labella-Ortega, Maria Maisto, Antonello Prigioniero, Daniela Zuzolo, Carmine Guarino
{"title":"Management impacts rhizosphere composition and gene expression in vineyards","authors":"Maria Tartaglia,&nbsp;Monica Labella-Ortega,&nbsp;Maria Maisto,&nbsp;Antonello Prigioniero,&nbsp;Daniela Zuzolo,&nbsp;Carmine Guarino","doi":"10.1016/j.rhisph.2024.100981","DOIUrl":"10.1016/j.rhisph.2024.100981","url":null,"abstract":"<div><div>This study examined rhizosphere soil samples from vineyards located in Sannio area, (Campania, Italy) with different management practices to assess the microbiota's functionality through a metatranscriptomic analysis. The analysis provided a comprehensive taxonomic characterization, gene expression insights, and predictive functional analyses. The experiment included 18 samples from three management-based groups (green manure, periodic hoeing, burying pruning) each with six biological replicates from two vineyards, yielding 316 Gb of data (17.5 Gb/sample). In the vineyards in which a green manure mix of Brassicaceae and Fabaceae was practised, the predominant bacterial phyla are Actinomycetota (with predominant families Conexibacteraceae and Nocardioidaceae), and Pseudomonadota (predominantly Nitrobacteraceae and Methylobacteriaceae). As regards the phylum Streptophyta, as expected, there is a greater abundance of transcripts from Vitaceae and Brassicaceae. About fungi, the most abundant phylum Ascomycota has predominantly Pyronemataceae and Pleosporaceae. Of particular interest related to this type of managment is the abundance of viral transcripts, with the most abundant phylum Pisuviricota and the families Secoviridae and Dicistroviridae. The most significantly up-regulated genes in these vineyards belonged to GO classes involved in viral infections and plant stress responses. In vineyards where regular tilling is carried out, a similar pattern but higher percentages of Actinobacteria and Lenarviricota were observed. In these samples, genes involved in phytohormone pathways (Jasmonic acid, Gibberellin, Salicylic acid) and root system development were up-expressed. Vineyards with a discordant taxonomic profile were those where pruning waste was routinely buried. This management practice was correlated with a marked increase in Nematoda transcripts. Gene expression and pathway enrichment analyses identified significant metabolic and signal transduction pathways associated with differentially expressed genes, highlighting how the rhizosphere is influenced by agricultural practices.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100981"},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chrysin alleviates salt stress in tomato by physiological, biochemical, and genetic mechanisms 菊粉通过生理、生化和遗传机制缓解番茄的盐胁迫
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-24 DOI: 10.1016/j.rhisph.2024.100979
Melek Ekinci , Metin Turan , Murat Aydin , Merve Yuce , Güleray Agar , Selda Ors , Emre İlhan , Abdulkadir Ciltas , Sezai Ercisli , Ertan Yildirim
{"title":"Chrysin alleviates salt stress in tomato by physiological, biochemical, and genetic mechanisms","authors":"Melek Ekinci ,&nbsp;Metin Turan ,&nbsp;Murat Aydin ,&nbsp;Merve Yuce ,&nbsp;Güleray Agar ,&nbsp;Selda Ors ,&nbsp;Emre İlhan ,&nbsp;Abdulkadir Ciltas ,&nbsp;Sezai Ercisli ,&nbsp;Ertan Yildirim","doi":"10.1016/j.rhisph.2024.100979","DOIUrl":"10.1016/j.rhisph.2024.100979","url":null,"abstract":"<div><div>Soil salinity greatly reduces agricultural productivity, especially in dry and semi-arid regions, by interfering with physiological and biochemical processes. This research aimed to determine whether Chrysin (Chr) can mitigate the negative effects of salinity on growth parameters, antioxidant enzyme activity, and gene expression in tomato (<em>Solanum lycopersicum</em> L.) plants. Experiments were conducted in a semi-controlled greenhouse, with plants subjected to varying concentrations of sodium chloride (NaCl) (0 and 100 mM) and Chr (0, 0.1, 0.5, and 1.0 mM). Results revealed that salinity stress significantly reduced plant height, leaf area, and chlorophyll content while increasing hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), malondialdehyde (MDA), and proline levels, indicating oxidative stress. Chr application alleviated these detrimental effects by enhancing the activity of antioxidant enzymes such as catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD), thereby reducing reactive oxygen species (ROS) accumulation. Additionally, Chr treatments improved plant water status and mineral content under salt stress. Gene expression analysis showed that Chr positively regulated the transcription of salt tolerance-related genes, including HKT1-1, HKT1-2, and PIP1-2, which are associated with sodium ion transport and water balance. These findings suggest that Chr can be an effective biostimulant for enhancing salt tolerance in tomato plants by modulating physiological, biochemical, and genetic mechanisms. This study provides insights into Chr's potential as a sustainable solution for improving crop resilience to salinity in agricultural practices. Further research is recommended to optimize Chr concentrations for maximum efficacy.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100979"},"PeriodicalIF":3.4,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142528597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of endophytic fungi treatments on aluminum contents in Vernicia montana seedlings and soils under different concentrations of aluminum stress 内生真菌处理对不同浓度铝胁迫下蕨类植物幼苗和土壤中铝含量的影响
IF 3.4 3区 生物学
Rhizosphere Pub Date : 2024-10-23 DOI: 10.1016/j.rhisph.2024.100982
Qiaoyun Wu , Yaorui Zhang , Han Lin , Can Chen , Anqiang Xie , Hailan Fan
{"title":"Influence of endophytic fungi treatments on aluminum contents in Vernicia montana seedlings and soils under different concentrations of aluminum stress","authors":"Qiaoyun Wu ,&nbsp;Yaorui Zhang ,&nbsp;Han Lin ,&nbsp;Can Chen ,&nbsp;Anqiang Xie ,&nbsp;Hailan Fan","doi":"10.1016/j.rhisph.2024.100982","DOIUrl":"10.1016/j.rhisph.2024.100982","url":null,"abstract":"<div><div>Although leveraging the interaction with endophytic fungi is an efficient and environment-friendly strategy for plants to enhance growth and resistance, how different endophyte species influence host plants’ resilience in adverse conditions remain comparatively unclear. In order to explore the effect of endophytic fungi on the aluminum resistance of woody host plants, <em>Vernicia montana</em> seedlings were subjected to different aluminum concentrations (T0, T1, T2, T3, T4) in this study. The aluminum contents in roots, leaves and rhizospheric soil of <em>V. montana</em> seedlings were determined after applying endophyte suspensions of <em>Pestalotiopsis</em> (NP), <em>Alternaria</em> (LA), <em>Penicillium</em> (QP), <em>Coniothyrium</em> (DC) and <em>Thermophilic</em> (ST) spp. The results showed that aluminum stress treatment, endophytic fungi treatment and their interaction had significant effects on aluminum content in leaves, aluminum content in roots, aluminum content in rhizospheric soil, and the transport and retention rate of aluminum ions in soil-root-leaf. With the increase of aluminum concentrations, the aluminum content in leaves of <em>V. montana</em> increased in the endophyte treatments of LA and ST, decreased in CK, NP and DC, or had marginal variation in QP treatment. Compared with T0, four endophyte treatments of LA, QP, DC and ST significantly reduced root aluminum content under T4 concentration (P &lt; 0.05), contrary to the results of NP treatment. Endophyte treatments significantly increased root aluminum content of V. montana under T1 concentration (P &lt; 0.05). The foliar Al content in fungi-inoculated seedlings was significantly lower than that of the non-inoculated ones under T0 and T3 levels (P &lt; 0.05), the LRR is less than 1, while the opposite trend was observed under T2 and T4 treatments. The aluminum transport coefficient TFsoil-root and TFroot-leaf increased in different proportions under the same aluminum concentration. The findings indicate that the application of endophytic fungi change the aluminum contents and transport from rhizospheric soil, roots to leaves. The specific effects of endophytic fungi vary with the degree of aluminum stress and the fungi genus. The study proves that inoculation of endophytic fungi can improve the aluminum tolerance of host plants, and thereby play an important role in promoting the sustainable development of forestry.</div></div>","PeriodicalId":48589,"journal":{"name":"Rhizosphere","volume":"32 ","pages":"Article 100982"},"PeriodicalIF":3.4,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信