AIMS MathematicsPub Date : 2025-01-01Epub Date: 2025-01-22DOI: 10.3934/math.2025068
Ruzhi Song, Fengling Li, Jie Wu, Fengchun Lei, Guo-Wei Wei
{"title":"Multi-scale Jones polynomial and persistent Jones polynomial for knot data analysis.","authors":"Ruzhi Song, Fengling Li, Jie Wu, Fengchun Lei, Guo-Wei Wei","doi":"10.3934/math.2025068","DOIUrl":"https://doi.org/10.3934/math.2025068","url":null,"abstract":"<p><p>Many structures in science, engineering, and art can be viewed as curves in 3-space. The entanglement of these curves plays a crucial role in determining the functionality and physical properties of materials. Many concepts in knot theory provide theoretical tools to explore the complexity and entanglement of curves in 3-space. However, classical knot theory focuses on global topological properties and lacks the consideration of local structural information, which is critical in practical applications. In this work, two localized models based on the Jones polynomial were proposed, namely, the multi-scale Jones polynomial and the persistent Jones polynomial. The stability of these models, especially the insensitivity of the multi-scale and persistent Jones polynomial models to small perturbations in curve collections, was analyzed, thus ensuring their robustness for real-world applications.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"10 1","pages":"1463-1487"},"PeriodicalIF":1.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12363994/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144974705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS MathematicsPub Date : 2024-01-01Epub Date: 2024-09-23DOI: 10.3934/math.20241333
Zhe Su, Yiying Tong, Guo-Wei Wei
{"title":"Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning.","authors":"Zhe Su, Yiying Tong, Guo-Wei Wei","doi":"10.3934/math.20241333","DOIUrl":"10.3934/math.20241333","url":null,"abstract":"<p><p>Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"9 10","pages":"27438-27470"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12462892/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS MathematicsPub Date : 2024-01-01Epub Date: 2024-09-10DOI: 10.3934/math.20241277
Li Shen, Jian Liu, Guo-Wei Wei
{"title":"Evolutionary Khovanov homology.","authors":"Li Shen, Jian Liu, Guo-Wei Wei","doi":"10.3934/math.20241277","DOIUrl":"10.3934/math.20241277","url":null,"abstract":"<p><p>Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"9 9","pages":"26139-26165"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145187277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AIMS MathematicsPub Date : 2024-01-01Epub Date: 2024-09-23DOI: 10.3934/math.20241334
Saulo Orizaga, Maurice Fabien, Michael Millard
{"title":"Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.","authors":"Saulo Orizaga, Maurice Fabien, Michael Millard","doi":"10.3934/math.20241334","DOIUrl":"10.3934/math.20241334","url":null,"abstract":"<p><p>In this computational paper, we focused on the efficient numerical implementation of semi-implicit methods for models in materials science. In particular, we were interested in a class of nonlinear higher-order parabolic partial differential equations. The Cahn-Hilliard (CH) equation was chosen as a benchmark problem for our proposed methods. We first considered the Cahn-Hilliard equation with a convexity-splitting (CS) approach coupled with a backward Euler approximation of the time derivative and tested the performance against the bi-harmonic-modified (BHM) approach in terms of accuracy, order of convergence, and computation time. Higher-order time-stepping techniques that allow for the methods to increase their accuracy and order of convergence were then introduced. The proposed schemes in this paper were found to be very efficient for 2D computations. Computed dynamics in 2D and 3D are presented to demonstrate the energy-decreasing property and overall performance of the methods for longer simulation runs with a variety of initial conditions. In addition, we also present a simple yet powerful way to accelerate the computations by using MATLAB built-in commands to perform GPU implementations of the schemes. We show that it is possible to accelerate computations for the CH equation in 3D by a factor of 80, provided the hardware is capable enough.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"9 10","pages":"27471-27496"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fejér type inequalities for harmonically convex functions","authors":"Muhammad Amer Latif","doi":"10.3934/math.2022835","DOIUrl":"https://doi.org/10.3934/math.2022835","url":null,"abstract":"In this study, some mappings related to the Fejér-type inequalities for harmonically convex functions are defined over $ left[ 0, 1right] $. Some Fejér-type inequalities for harmonically convex functions are proved using these mappings. Properties of these mappings are considered and consequently, refinements are obtained of some known results.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46984565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde
{"title":"Angle in the space of $ p $-summable sequences","authors":"M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde","doi":"10.3934/math.2022155","DOIUrl":"https://doi.org/10.3934/math.2022155","url":null,"abstract":"The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1le p < infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ sge 2 $ of $ A $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48080725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cohomologies of modified $ lambda $-differential Lie triple systems and applications","authors":"Wen Teng, Fengshan Long, Yu Zhang","doi":"10.3934/math.20231280","DOIUrl":"https://doi.org/10.3934/math.20231280","url":null,"abstract":"In this paper, we introduce the concept and representation of modified $ lambda $-differential Lie triple systems. Next, we define the cohomology of modified $ lambda $-differential Lie triple systems with coefficients in a suitable representation. As applications of the proposed cohomology theory, we study 1-parameter formal deformations and abelian extensions of modified $ lambda $-differential Lie triple systems.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42483532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative","authors":"Takiko Sasaki, Shuhei Takamatsu, H. Takamura","doi":"10.3934/math.20231300","DOIUrl":"https://doi.org/10.3934/math.20231300","url":null,"abstract":"This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47127415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Lukashiv, I. Malyk, Maryna K. Chepeleva, P. Nazarov
{"title":"Stability of stochastic dynamic systems of a random structure with Markov switching in the presence of concentration points","authors":"T. Lukashiv, I. Malyk, Maryna K. Chepeleva, P. Nazarov","doi":"10.3934/math.20231245","DOIUrl":"https://doi.org/10.3934/math.20231245","url":null,"abstract":"This article aims to investigate sufficient conditions for the stability of the trivial solution of stochastic differential equations with a random structure, particularly in contexts involving the presence of concentration points. The proof of asymptotic stability leverages the use of Lyapunov functions, supplemented by additional constraints on the magnitudes of jumps and jump times, as well as the Markov property of the system solutions. The findings are elucidated with an example, demonstrating both stable and unstable conditions of the system. The novelty of this work is in the consideration of jump concentration points, which are not considered in classical works. The assumption of the existence of concentration points leads to additional constraints on jumps, jump times and relations between them.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45589800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed radial-angular bounds for Hardy-type operators on Heisenberg group","authors":"Zhongci Hang, Xiang Li, D. Yan","doi":"10.3934/math.20231070","DOIUrl":"https://doi.org/10.3934/math.20231070","url":null,"abstract":"In this paper, we study $ n $-dimensional Hardy operator and its dual in mixed radial-angular spaces on Heisenberg group and obtain their sharp bounds by using the rotation method. Furthermore, the sharp bounds of $ n $-dimensional weighted Hardy operator and weighted Cesàro operator are also obtained.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"1 1","pages":""},"PeriodicalIF":2.2,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41319140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}