Angle in the space of $ p $-summable sequences

IF 1.8 3区 数学 Q1 MATHEMATICS
M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde
{"title":"Angle in the space of $ p $-summable sequences","authors":"M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde","doi":"10.3934/math.2022155","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\\le p < \\infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\\ge 2 $ of $ A $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2022155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\le p < \infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\ge 2 $ of $ A $.
$ p $-可和序列空间中的角
本文的目的是研究具有通常范数的$ A $在$ p $ -可和序列空间上的完备性,其中$ A $是$ p $ -可和序列空间和$ 1\le p < \infty $中的子空间。在$ A $上引入了一个新的内积,并用一个新的范数证明了$ A $的完备性。此外,我们还讨论了$ A $中两个向量与两个子空间之间的夹角。特别地,我们讨论了$ 1 $维子空间与$ (s-1) $维子空间之间的夹角,其中$ A $的$ s\ge 2 $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信