M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde
{"title":"Angle in the space of $ p $-summable sequences","authors":"M. Nur, M. Bahri, A. Islamiyati, Harmanus Batkunde","doi":"10.3934/math.2022155","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\\le p < \\infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\\ge 2 $ of $ A $.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.2022155","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to investigate completness of $ A $ that equipped with usual norm on $ p $-summable sequences space where $ A $ is subspace in $ p $-summable sequences space and $ 1\le p < \infty $. We also introduce a new inner product on $ A $ and prove completness of $ A $ using a new norm that corresponds this new inner product. Moreover, we discuss the angle between two vectors and two subspaces in $ A $. In particular, we discuss the angle between $ 1 $-dimensional subspace and $ (s-1) $-dimensional subspace where $ s\ge 2 $ of $ A $.
本文的目的是研究具有通常范数的$ A $在$ p $ -可和序列空间上的完备性,其中$ A $是$ p $ -可和序列空间和$ 1\le p < \infty $中的子空间。在$ A $上引入了一个新的内积,并用一个新的范数证明了$ A $的完备性。此外,我们还讨论了$ A $中两个向量与两个子空间之间的夹角。特别地,我们讨论了$ 1 $维子空间与$ (s-1) $维子空间之间的夹角,其中$ A $的$ s\ge 2 $。
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.