{"title":"具有空间导数的双线性项的一维波动方程经典解的寿命","authors":"Takiko Sasaki, Shuhei Takamatsu, H. Takamura","doi":"10.3934/math.20231300","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative\",\"authors\":\"Takiko Sasaki, Shuhei Takamatsu, H. Takamura\",\"doi\":\"10.3934/math.20231300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231300\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231300","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative
This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.