{"title":"具有空间导数的双线性项的一维波动方程经典解的寿命","authors":"Takiko Sasaki, Shuhei Takamatsu, H. Takamura","doi":"10.3934/math.20231300","DOIUrl":null,"url":null,"abstract":"This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative\",\"authors\":\"Takiko Sasaki, Shuhei Takamatsu, H. Takamura\",\"doi\":\"10.3934/math.20231300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20231300\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20231300","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative
This paper is devoted to the lifespan estimates of small classical solutions of the initial value problems for one dimensional wave equations with semilinear terms of the spatial derivative of the unknown function. It is natural that the result is same as the one for semilinear terms of the time-derivative. But there are so many differences among their proofs. Moreover, it is meaningful to study this problem in the sense that it may help us to investigate its blow-up boundary in the near future.
期刊介绍:
AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.