进化Khovanov同源性。

IF 1.8 3区 数学 Q1 MATHEMATICS
AIMS Mathematics Pub Date : 2024-01-01 Epub Date: 2024-09-10 DOI:10.3934/math.20241277
Li Shen, Jian Liu, Guo-Wei Wei
{"title":"进化Khovanov同源性。","authors":"Li Shen, Jian Liu, Guo-Wei Wei","doi":"10.3934/math.20241277","DOIUrl":null,"url":null,"abstract":"<p><p>Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"9 9","pages":"26139-26165"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463229/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary Khovanov homology.\",\"authors\":\"Li Shen, Jian Liu, Guo-Wei Wei\",\"doi\":\"10.3934/math.20241277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.</p>\",\"PeriodicalId\":48562,\"journal\":{\"name\":\"AIMS Mathematics\",\"volume\":\"9 9\",\"pages\":\"26139-26165\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12463229/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIMS Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/math.20241277\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20241277","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

结理论是几何拓扑学的一个分支,是对封闭圆嵌入三维欧几里德空间的研究,其动机是日常生活和人类文明中无处不在的结。然而,目前的结理论主要集中在拓扑结构上,缺乏度量分析。结果,结理论的应用在很大程度上仍然是原始的和定性的。受定量结数据分析(KDA)需求的推动,本工作实现了进化Khovanov同源性(EKH),以促进现实世界数据的多尺度KDA。EKH考虑特定的指标来过滤链接,捕获超越传统不变量的结构型的多尺度拓扑特征。证明了EKH可以在适当的尺度上揭示非平凡的结不变量,即使结的整体拓扑结构很简单。与其他数据形式(如点云数据和流形数据)相比,所提出的EKH在与结型数据相关的KDA和机器学习应用中具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary Khovanov homology.

Knot theory, a subfield in geometric topology, is the study of the embedding of closed circles into three-dimensional Euclidean space, motivated by the ubiquity of knots in daily life and human civilization. However, focusing on topology, the current knot theory lacks metric analysis. As a result, the application of knot theory has remained largely primitive and qualitative. Motivated by the need of quantitative knot data analysis (KDA), this work implemented the evolutionary Khovanov homology (EKH) to facilitate a multiscale KDA of real-world data. EKH considers specific metrics to filter links, capturing multiscale topological features of knot configurations beyond traditional invariants. It is demonstrated that EKH can reveal non-trivial knot invariants at appropriate scales, even when the global topological structure of a knot is simple. The proposed EKH holds great potential for KDA and machine learning applications related to knot-type data, in contrast to other data forms, such as point cloud data and data on manifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信