Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.

IF 1.8 3区 数学 Q1 MATHEMATICS
AIMS Mathematics Pub Date : 2024-01-01 Epub Date: 2024-09-23 DOI:10.3934/math.20241334
Saulo Orizaga, Maurice Fabien, Michael Millard
{"title":"Efficient numerical approaches with accelerated graphics processing unit (GPU) computations for Poisson problems and Cahn-Hilliard equations.","authors":"Saulo Orizaga, Maurice Fabien, Michael Millard","doi":"10.3934/math.20241334","DOIUrl":null,"url":null,"abstract":"<p><p>In this computational paper, we focused on the efficient numerical implementation of semi-implicit methods for models in materials science. In particular, we were interested in a class of nonlinear higher-order parabolic partial differential equations. The Cahn-Hilliard (CH) equation was chosen as a benchmark problem for our proposed methods. We first considered the Cahn-Hilliard equation with a convexity-splitting (CS) approach coupled with a backward Euler approximation of the time derivative and tested the performance against the bi-harmonic-modified (BHM) approach in terms of accuracy, order of convergence, and computation time. Higher-order time-stepping techniques that allow for the methods to increase their accuracy and order of convergence were then introduced. The proposed schemes in this paper were found to be very efficient for 2D computations. Computed dynamics in 2D and 3D are presented to demonstrate the energy-decreasing property and overall performance of the methods for longer simulation runs with a variety of initial conditions. In addition, we also present a simple yet powerful way to accelerate the computations by using MATLAB built-in commands to perform GPU implementations of the schemes. We show that it is possible to accelerate computations for the CH equation in 3D by a factor of 80, provided the hardware is capable enough.</p>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11466300/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/math.20241334","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this computational paper, we focused on the efficient numerical implementation of semi-implicit methods for models in materials science. In particular, we were interested in a class of nonlinear higher-order parabolic partial differential equations. The Cahn-Hilliard (CH) equation was chosen as a benchmark problem for our proposed methods. We first considered the Cahn-Hilliard equation with a convexity-splitting (CS) approach coupled with a backward Euler approximation of the time derivative and tested the performance against the bi-harmonic-modified (BHM) approach in terms of accuracy, order of convergence, and computation time. Higher-order time-stepping techniques that allow for the methods to increase their accuracy and order of convergence were then introduced. The proposed schemes in this paper were found to be very efficient for 2D computations. Computed dynamics in 2D and 3D are presented to demonstrate the energy-decreasing property and overall performance of the methods for longer simulation runs with a variety of initial conditions. In addition, we also present a simple yet powerful way to accelerate the computations by using MATLAB built-in commands to perform GPU implementations of the schemes. We show that it is possible to accelerate computations for the CH equation in 3D by a factor of 80, provided the hardware is capable enough.

利用图形处理器(GPU)加速计算泊松问题和卡恩-希利亚德方程的高效数值方法。
在这篇计算论文中,我们重点关注材料科学模型半隐式方法的高效数值实现。我们尤其对一类非线性高阶抛物线偏微分方程感兴趣。我们选择卡恩-希利亚德(Cahn-Hilliard,CH)方程作为我们所提方法的基准问题。我们首先用凸性分割(CS)方法结合时间导数的后向欧拉近似来考虑 Cahn-Hilliard 方程,并在精度、收敛阶数和计算时间方面与双谐波修正(BHM)方法进行了性能对比测试。然后介绍了高阶时间步进技术,使这些方法能够提高精度和收敛阶次。本文提出的方案在二维计算中非常高效。本文展示了二维和三维的计算动态,以证明这些方法在各种初始条件下进行较长时间模拟运行时的能量递减特性和整体性能。此外,我们还介绍了一种简单而强大的方法,通过使用 MATLAB 内置命令来执行 GPU 实现方案,从而加速计算。我们的研究表明,只要硬件足够强大,就有可能将三维 CH 方程的计算速度提高 80 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信