Journal of King Saud University-Computer and Information Sciences最新文献

筛选
英文 中文
Enhancing requirements-to-code traceability with GA-XWCoDe: Integrating XGBoost, Node2Vec, and genetic algorithms for improving model performance and stability 利用 GA-XWCoDe 增强从需求到代码的可追溯性:集成 XGBoost、Node2Vec 和遗传算法,提高模型性能和稳定性
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-01 DOI: 10.1016/j.jksuci.2024.102197
Zhiyuan Zou , Bangchao Wang , Xinrong Hu , Yang Deng , Hongyan Wan , Huan Jin
{"title":"Enhancing requirements-to-code traceability with GA-XWCoDe: Integrating XGBoost, Node2Vec, and genetic algorithms for improving model performance and stability","authors":"Zhiyuan Zou ,&nbsp;Bangchao Wang ,&nbsp;Xinrong Hu ,&nbsp;Yang Deng ,&nbsp;Hongyan Wan ,&nbsp;Huan Jin","doi":"10.1016/j.jksuci.2024.102197","DOIUrl":"10.1016/j.jksuci.2024.102197","url":null,"abstract":"<div><div>This study addresses the challenge of requirements-to-code traceability by proposing a novel model, Genetic Algorithm-XGBoost With Code Dependency (GA-XWCoDe), which integrates eXtreme Gradient Boosting (XGBoost) with a Node2Vec model-weighted code dependency strategy and genetic algorithms for parameter optimisation. XGBoost mitigates overfitting and enhances model stability, while Node2Vec improves prediction accuracy for low-confidence links. Genetic algorithms are employed to optimise model parameters efficiently, reducing the resource intensity of traditional methods. Experimental results show that GA-XWCoDe outperforms the state-of-the-art method TRAceability lInk cLassifier (TRAIL) by 17.44% and Deep Forest for Requirement traceability (DF4RT) by 33.36% in terms of average F1 performance across four datasets. It is significantly superior to all baseline methods at a confidence level of <span><math><mi>α</mi></math></span>¡0.01 and demonstrates exceptional performance and stability across various training data scales.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142358137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast and robust JND-guided video watermarking scheme in spatial domain 空间域快速稳健的 JND 引导视频水印方案
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-30 DOI: 10.1016/j.jksuci.2024.102199
Antonio Cedillo-Hernandez , Lydia Velazquez-Garcia , Manuel Cedillo-Hernandez , David Conchouso-Gonzalez
{"title":"Fast and robust JND-guided video watermarking scheme in spatial domain","authors":"Antonio Cedillo-Hernandez ,&nbsp;Lydia Velazquez-Garcia ,&nbsp;Manuel Cedillo-Hernandez ,&nbsp;David Conchouso-Gonzalez","doi":"10.1016/j.jksuci.2024.102199","DOIUrl":"10.1016/j.jksuci.2024.102199","url":null,"abstract":"<div><div>Generally speaking, those watermarking studies using the spatial domain tend to be fast but with limited robustness and imperceptibility while those performed in other transform domains are robust but have high computational cost. Watermarking applied to digital video has as one of the main challenges the large amount of computational power required due to the huge amount of information to be processed. In this paper we propose a watermarking algorithm for digital video that addresses this problem. To increase the speed, the watermark is embedded using a technique to modify the DCT coefficients directly in the spatial domain, in addition to carrying out this process considering the video scene as the basic unit and not the video frame. In terms of robustness, the watermark is modulated by a Just Noticeable Distortion (JND) scheme computed directly in the spatial domain guided by visual attention to increase the strength of the watermark to the maximum level but without this operation being perceivable by human eyes. Experimental results confirm that the proposed method achieves remarkable performance in terms of processing time, robustness and imperceptibility compared to previous studies.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Software requirement engineering over the federated environment in distributed software development process 分布式软件开发过程中联合环境下的软件需求工程
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-28 DOI: 10.1016/j.jksuci.2024.102201
Abdulaziz Alhumam, Shakeel Ahmed
{"title":"Software requirement engineering over the federated environment in distributed software development process","authors":"Abdulaziz Alhumam,&nbsp;Shakeel Ahmed","doi":"10.1016/j.jksuci.2024.102201","DOIUrl":"10.1016/j.jksuci.2024.102201","url":null,"abstract":"<div><div>In the recent past, the distributed software development (DSD) process has become increasingly prevalent with the rapid evolution of the software development process. This transformation would necessitate a robust framework for software requirement engineering (SRE) to work in federated environments. Using the federated environment, multiple independent software<!--> <!-->entities would<!--> <!-->work together to develop software, often across organizations<!--> <!-->and geographical borders. The decentralized structure of the federated architecture makes requirement elicitation, analysis, specification, validation, and administration more effective.<!--> <!-->The proposed model emphasizes flexibility and agility, leveraging the collaboration of multiple localized models within a diversified development framework. This collaborative approach is designed to integrate the strengths of each local process, ultimately resulting in the creation of a robust software prototype. The performance of the proposed DSD model is evaluated using two case studies on the E-Commerce website and the Learning Management system. The proposed model is analyzed by considering divergent functional and non-functional requirements for each of the case studies and analyzing the performance using standardized metrics like mean square error (MSE), mean absolute error (MAE), and Pearson Correlation Coefficient (PCC). It is observed that the proposed model exhibited a reasonable performance with an MSE value of 0.12 and 0.153 for both functional and non-functional requirements, respectively, and an MAE value of 0.222 and 0.232 for both functional and non-functional requirements, respectively.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PFEL-Net: A lightweight network to enhance feature for multi-scale pedestrian detection PFEL-Net:用于增强多尺度行人检测特征的轻量级网络
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-26 DOI: 10.1016/j.jksuci.2024.102198
Jingwen Tang , Huicheng Lai , Guxue Gao , Tongguan Wang
{"title":"PFEL-Net: A lightweight network to enhance feature for multi-scale pedestrian detection","authors":"Jingwen Tang ,&nbsp;Huicheng Lai ,&nbsp;Guxue Gao ,&nbsp;Tongguan Wang","doi":"10.1016/j.jksuci.2024.102198","DOIUrl":"10.1016/j.jksuci.2024.102198","url":null,"abstract":"<div><div>In the context of intelligent community research, pedestrian detection is an important and challenging object detection task. The diversity in pedestrian target scales and the interference from the surrounding background can result in incorrect and missed detections by the detector, while a large algorithm model can pose challenges for deploying the detector. In response to these issues, this work presents a pedestrian feature enhancement lightweight network (PFEL-Net), which provides the possibility for edge computing and accurate detection of multi-scale pedestrian targets in complex scenes. Firstly, a parallel dilated residual module is designed to expand the receptive field for obtaining richer pedestrian features; then, the selective bidirectional diffusion pyramid network is devised to finely fuse features, and a detail feature layer captures multi-scale information; after that, the lightweight shared detection head is constructed to lightweight the model head; finally, the channel pruning algorithm is employed to further reduce the computational complexity and size of the improved model without compromising accuracy. On the CityPersons dataset, compared to YOLOv8, PFEL-Net increases the <span><math><mrow><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>m</mi><mi>A</mi><msub><mrow><mi>P</mi></mrow><mrow><mn>50</mn><mo>:</mo><mn>95</mn></mrow></msub></mrow></math></span> by 6.3% and 4.9%, respectively, reduces the number of model parameters by 89% and compresses the model size by 85%, resulting in a mere 0.9 MB. Similarly, excellent performance is achieved on the TinyPerson dataset. The source code is available at <span><span>https://github.com/1tangbao/PFEL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A truthful randomized mechanism for task allocation with multi-attributes in mobile edge computing 移动边缘计算中多属性任务分配的真实随机机制
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-26 DOI: 10.1016/j.jksuci.2024.102196
Xi Liu , Jun Liu
{"title":"A truthful randomized mechanism for task allocation with multi-attributes in mobile edge computing","authors":"Xi Liu ,&nbsp;Jun Liu","doi":"10.1016/j.jksuci.2024.102196","DOIUrl":"10.1016/j.jksuci.2024.102196","url":null,"abstract":"<div><div>Mobile Edge Computing (MEC) aims at decreasing the response time and energy consumption of running mobile applications by offloading the tasks of mobile devices (MDs) to the MEC servers located at the edge of the network. The demands are multi-attribute, where the distances between MDs and access points lead to differences in required resources and transmission energy consumption. Unfortunately, the existing works have not considered both task allocation and energy consumption problems. Motivated by this, this paper considers the problem of task allocation with multi-attributes, where the problem consists of the winner determination and offloading decision problems. First, the problem is formulated as the auction-based model to provide flexible service. Then, a randomized mechanism is designed and is truthful in expectation. This drives the system into an equilibrium where no MD has incentives to increase the utility by declaring an untrue value. In addition, an approximation algorithm is proposed to minimize remote energy consumption and is a polynomial-time approximation scheme. Therefore, it achieves a tradeoff between optimality loss and time complexity. Simulation results reveal that the proposed mechanism gets the near-optimal allocation. Furthermore, compared with the baseline methods, the proposed mechanism can effectively increase social welfare and bring higher revenue to edge server providers.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flow prediction of mountain cities arterial road network for real-time regulation 山区城市干线路网流量预测与实时调控
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-25 DOI: 10.1016/j.jksuci.2024.102190
Xiaoyu Cai , Zimu Li , Jiajia Dai , Liang Lv , Bo Peng
{"title":"Flow prediction of mountain cities arterial road network for real-time regulation","authors":"Xiaoyu Cai ,&nbsp;Zimu Li ,&nbsp;Jiajia Dai ,&nbsp;Liang Lv ,&nbsp;Bo Peng","doi":"10.1016/j.jksuci.2024.102190","DOIUrl":"10.1016/j.jksuci.2024.102190","url":null,"abstract":"<div><div>This study aims to enhance the understanding of vehicle path selection behavior within arterial road networks by investigating the influencing factors and analyzing spatial and temporal traffic flow distributions. Using radio frequency identification (RFID) travel data, key factors such as travel duration, route familiarity, route length, expressway ratio, arterial road ratio, and ramp ratio were identified. We then proposed an origin–destination path acquisition method and developed a route-selection prediction model based on a multinomial logit model with sample weights. Additionally, the study linked the traffic control scheme with travel time using the Bureau of Public Roads function—a model that illustrates the relationship between network-wide travel time and traffic demand—and developed an arterial road network traffic forecasting model. Verification showed that the prediction accuracy of the improved multinomial logit model increased from 92.55 % to 97.87 %. Furthermore, reducing the green time ratio for multilane merging from 0.75 to 0.5 significantly decreased the likelihood of vehicles choosing this route and reduced the number of vehicles passing through the ramp. The flow prediction model achieved a 97.9 % accuracy, accurately reflecting actual volume changes and ensuring smooth operation of the main airport road. This provides a strong foundation for developing effective traffic control plans.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The evolution of the flip-it game in cybersecurity: Insights from the past to the future 网络安全翻转游戏的演变:从过去到未来的启示
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-25 DOI: 10.1016/j.jksuci.2024.102195
Mousa Tayseer Jafar , Lu-Xing Yang , Gang Li , Xiaofan Yang
{"title":"The evolution of the flip-it game in cybersecurity: Insights from the past to the future","authors":"Mousa Tayseer Jafar ,&nbsp;Lu-Xing Yang ,&nbsp;Gang Li ,&nbsp;Xiaofan Yang","doi":"10.1016/j.jksuci.2024.102195","DOIUrl":"10.1016/j.jksuci.2024.102195","url":null,"abstract":"<div><div>Cybercrime statistics highlight the severe and growing impact of digital threats on individuals and organizations, with financial losses escalating rapidly. As cybersecurity becomes a central challenge, several modern cyber defense strategies prove insufficient for effectively countering the threats posed by sophisticated attackers. Despite advancements in cybersecurity, many existing frameworks often lack the capacity to address the evolving tactics of adept adversaries. With cyber threats growing in sophistication and diversity, there is a growing acknowledgment of the shortcomings within current defense strategies, underscoring the need for more robust and innovative solutions. To develop resilient cyber defense strategies, it remains essential to simulate the dynamic interaction between sophisticated attackers and system defenders. Such simulations enable organizations to anticipate and effectively counter emerging threats. The Flip-It game is recognized as an intelligent simulation game for capturing the dynamic interplay between sophisticated attackers and system defenders. It provides the capability to emulate intricate cyber scenarios, allowing organizations to assess their defensive capabilities against evolving threats, analyze vulnerabilities, and improve their response strategies by simulating real-world cyber scenarios. This paper provides a comprehensive analysis of the Flip-It game in the context of cybersecurity, tracing its development from inception to future prospects. It highlights significant contributions and identifies potential future research avenues for scholars in the field. This study aims to deliver a thorough understanding of the Flip-It game’s progression, serving as a valuable resource for researchers and practitioners involved in cybersecurity strategy and defense mechanisms.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Framework to improve software effort estimation accuracy using novel ensemble rule 利用新型集合规则提高软件工作量估算准确性的框架
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-20 DOI: 10.1016/j.jksuci.2024.102189
Syed Sarmad Ali , Jian Ren , Ji Wu
{"title":"Framework to improve software effort estimation accuracy using novel ensemble rule","authors":"Syed Sarmad Ali ,&nbsp;Jian Ren ,&nbsp;Ji Wu","doi":"10.1016/j.jksuci.2024.102189","DOIUrl":"10.1016/j.jksuci.2024.102189","url":null,"abstract":"&lt;div&gt;&lt;div&gt;This investigation focuses on refining software effort estimation (SEE) to enhance project outcomes amidst the rapid evolution of the software industry. Accurate estimation is a cornerstone of project success, crucial for avoiding budget overruns and minimizing the risk of project failures. The framework proposed in this article addresses three significant issues that are critical for accurate estimation: dealing with missing or inadequate data, selecting key features, and improving the software effort model. Our proposed framework incorporates three methods: the &lt;em&gt;Novel Incomplete Value Imputation Model (NIVIM)&lt;/em&gt;, a hybrid model using &lt;em&gt;Correlation-based Feature Selection with a meta-heuristic algorithm (CFS-Meta)&lt;/em&gt;, and the &lt;em&gt;Heterogeneous Ensemble Model (HEM)&lt;/em&gt;. The combined framework synergistically enhances the robustness and accuracy of SEE by effectively handling missing data, optimizing feature selection, and integrating diverse predictive models for superior performance across varying project scenarios. The framework significantly reduces imputation and feature selection overhead, while the ensemble approach optimizes model performance through dynamic weighting and meta-learning. This results in lower mean absolute error (MAE) and reduced computational complexity, making it more effective for diverse software datasets. NIVIM is engineered to address incomplete datasets prevalent in SEE. By integrating a synthetic data methodology through a Variational Auto-Encoder (VAE), the model incorporates both contextual relevance and intrinsic project features, significantly enhancing estimation precision. Comparative analyses reveal that NIVIM surpasses existing models such as VAE, GAIN, K-NN, and MICE, achieving statistically significant improvements across six benchmark datasets, with average RMSE improvements ranging from &lt;em&gt;11.05%&lt;/em&gt; to &lt;em&gt;17.72%&lt;/em&gt; and MAE improvements from &lt;em&gt;9.62%&lt;/em&gt; to &lt;em&gt;21.96%&lt;/em&gt;. Our proposed method, CFS-Meta, balances global optimization with local search techniques, substantially enhancing predictive capabilities. The proposed CFS-Meta model was compared to single and hybrid feature selection models to assess its efficiency, demonstrating up to a &lt;em&gt;25.61%&lt;/em&gt; reduction in MSE. Additionally, the proposed CFS-Meta achieves a &lt;em&gt;10%&lt;/em&gt; (MAE) improvement against the hybrid PSO-SA model, an &lt;em&gt;11.38%&lt;/em&gt; (MAE) improvement compared to the Hybrid ABC-SA model, and &lt;em&gt;12.42%&lt;/em&gt; and &lt;em&gt;12.703%&lt;/em&gt; (MAE) improvements compared to the hybrid Tabu-GA and hybrid ACO-COA models, respectively. Our third method proposes an ensemble effort estimation (EEE) model that amalgamates diverse standalone models through a Dynamic Weight Adjustment-stacked combination (DWSC) rule. Tested against international benchmarks and industry datasets, the HEM method has improved the standalone model by an average of &lt;em&gt;21.8%&lt;/em&gt; (Pred()) and the homogeneous ensemble model by &lt;em&gt;15%&lt;/em&gt; (Pred()). This","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heterogeneous emotional contagion of the cyber–physical society 网络物理社会的异质情绪传染
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-18 DOI: 10.1016/j.jksuci.2024.102193
Heqi Gao , Jiayi Zhang , Guijuan Zhang , Chengming Zhang , Zena Tian , Dianjie Lu
{"title":"Heterogeneous emotional contagion of the cyber–physical society","authors":"Heqi Gao ,&nbsp;Jiayi Zhang ,&nbsp;Guijuan Zhang ,&nbsp;Chengming Zhang ,&nbsp;Zena Tian ,&nbsp;Dianjie Lu","doi":"10.1016/j.jksuci.2024.102193","DOIUrl":"10.1016/j.jksuci.2024.102193","url":null,"abstract":"<div><p>When emergencies occur, panic spreads quickly across cyberspace and physical space. Despite widespread attention to emotional contagion in cyber–physical societies (CPS), existing studies often overlook individual relationship heterogeneity, which results in imprecise models. To address this issue, we propose a heterogeneous emotional contagion method for CPS. First, we introduce the Strong–Weak Emotional Contagion Model (SW-ECM) to simulate the heterogeneous emotional contagion process in CPS. Second, we formulate the mean-field equations for the SW-ECM to accurately capture the dynamic evolution of heterogeneous emotional contagion in the CPS. Finally, we construct a small-world network based on strong–weak relationships to validate the effectiveness of our method. The experimental results show that our method can effectively simulate the heterogeneous emotional contagion and capture changes in relationships between individuals, providing valuable guidance for crowd evacuations prone to emotional contagion.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002829/pdfft?md5=f933d896a76a94be422b19df9a07b8ff&pid=1-s2.0-S1319157824002829-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142272806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced prediction model of short-term sea surface wind speed: A multiscale feature extraction and selection approach coupled with deep learning technique 短期海面风速增强预测模型:结合深度学习技术的多尺度特征提取和选择方法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-09-17 DOI: 10.1016/j.jksuci.2024.102192
Jin Tao , Jianing Wei , Hongjuan Zhou , Fanyi Meng , Yingchun Li , Chenxu Wang , Zhiquan Zhou
{"title":"Enhanced prediction model of short-term sea surface wind speed: A multiscale feature extraction and selection approach coupled with deep learning technique","authors":"Jin Tao ,&nbsp;Jianing Wei ,&nbsp;Hongjuan Zhou ,&nbsp;Fanyi Meng ,&nbsp;Yingchun Li ,&nbsp;Chenxu Wang ,&nbsp;Zhiquan Zhou","doi":"10.1016/j.jksuci.2024.102192","DOIUrl":"10.1016/j.jksuci.2024.102192","url":null,"abstract":"<div><div>Accurate prediction of short-term sea surface wind speed is essential for maritime safety and coastal management. Most conventional studies encounter challenges simply in analyzing raw wind speed sequences and extracting multiscale features directly from the original received data, which result in lower efficiency. In this paper, an enhanced hybrid model based on a novel data assemble method for original received data, a multiscale feature extraction and selection approach, and a predictive network, is proposed for accurate and efficient short-term sea surface wind speed forecasting. Firstly, the received original data including wind speed are assembled into correlation matrices in order to uncover inherent associations over varied time spans. Secondly a novel Multiscale Wind-speed Feature-Enhanced Convolutional Network (MW-FECN) is designed for efficient and selective multiscale feature extraction, which can capture comprehensive characteristics. Thirdly, a Random Forest Feature Selection (RF-FS) is employed to pinpoint crucial characteristics for enhanced prediction of wind speed with higher efficiency than the related works. Finally, the proposed hybrid model utilized a Bidirectional Long Short-Term Memory (BiLSTM) network to achieve the accurate prediction of wind speed. Experimental data are collected in Weihai sea area, and a case study consist of five benchmarks and three ablation models is conducted to assess the proposed hybrid model. Compared with the conventional methods, experiment results illustrate the effectiveness of the proposed hybrid model and demonstrate effective balancing prediction accuracy and computational time. The proposed hybrid model achieves up to a 28.45% MAE and 27.27% RMSE improvement over existing hybrid models.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":null,"pages":null},"PeriodicalIF":5.2,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信