Journal of King Saud University-Computer and Information Sciences最新文献

筛选
英文 中文
General secure encryption algorithm for separable reversible data hiding in encrypted domain 加密域中可分离可逆数据隐藏的通用安全加密算法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-11-01 DOI: 10.1016/j.jksuci.2024.102217
Hongli Wan, Minqing Zhang, Yan Ke, Zongbao Jiang, Fuqiang Di
{"title":"General secure encryption algorithm for separable reversible data hiding in encrypted domain","authors":"Hongli Wan,&nbsp;Minqing Zhang,&nbsp;Yan Ke,&nbsp;Zongbao Jiang,&nbsp;Fuqiang Di","doi":"10.1016/j.jksuci.2024.102217","DOIUrl":"10.1016/j.jksuci.2024.102217","url":null,"abstract":"<div><div>The separable reversible data hiding in encrypted domain (RDH-ED) algorithm leaves out the embedding space for the information before or after encryption and makes the operation of extracting the information and restoring the image not interfere with each other. The encryption method employed not only affects the embedding space of the information and separability, but is more crucial for ensuring security. However, the commonly used XOR, scram-bling or combination methods fall short in security, especially against known plaintext attack (KPA). Therefore, in order to improve the security of RDH-ED and be widely applicable, this paper proposes a high-security RDH-ED encryption algorithm that can be used to reserve space before encryption (RSBE) and free space after encryption (FSAE). During encryption, the image undergoes block XOR, global intra-block bit-plane scrambling (GIBS) and inter-block scrambling sequentially. The GIBS key is created through chaotic mapping transformation. Subsequently, two RDH-ED algorithms based on this encryption are proposed. Experimental results indicate that the algorithm outlined in this paper maintains consistent key communication traffic post key conversion. Additionally, its computational complexity remains at a constant level, satisfying separability criteria, and is suitable for both RSBE and FSAE methods. Simultaneously, while satisfying the security of a single encryption technique, we have expanded the key space to 2<span><math><mrow><msup><mrow></mrow><mrow><mn>8</mn><mi>N</mi><mi>p</mi></mrow></msup><mo>×</mo><mi>N</mi><mi>p</mi><mo>!</mo><mo>×</mo><mn>8</mn><msup><mrow><mo>!</mo></mrow><mrow><mi>N</mi><mi>p</mi></mrow></msup></mrow></math></span>, enabling resilience against various existing attack methods. Notably, particularly in KPA testing scenarios, the average decryption success rate is a mere 0.0067% and 0.0045%, highlighting its exceptional security. Overall, this virtually unbreakable system significantly enhances image security while preserving an appropriate embedding capacity.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102217"},"PeriodicalIF":5.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantum computing enhanced knowledge tracing: Personalized KT research for mitigating data sparsity 量子计算增强知识追踪:缓解数据稀疏性的个性化 KT 研究
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-11-01 DOI: 10.1016/j.jksuci.2024.102224
Chengke Bao , Qianxi Wu , Weidong Ji , Min Wang , Haoyu Wang
{"title":"Quantum computing enhanced knowledge tracing: Personalized KT research for mitigating data sparsity","authors":"Chengke Bao ,&nbsp;Qianxi Wu ,&nbsp;Weidong Ji ,&nbsp;Min Wang ,&nbsp;Haoyu Wang","doi":"10.1016/j.jksuci.2024.102224","DOIUrl":"10.1016/j.jksuci.2024.102224","url":null,"abstract":"<div><div>With the development of artificial intelligence in education, knowledge tracing (KT) has become a current research hotspot and is the key to the success of personalized instruction. However, data sparsity remains a significant challenge in the KT domain. To address this challenge, this paper applies quantum computing (QC) technology to KT for the first time. It proposes two personalized KT models incorporating quantum mechanics (QM): quantum convolutional enhanced knowledge tracing (QCE-KT) and quantum variational enhanced knowledge tracing (QVE-KT). Through quantum superposition and entanglement properties, QCE-KT and QVE-KT effectively alleviate the data sparsity problem in the KT domain through quantum convolutional layers and variational quantum circuits, respectively, and significantly improve the quality of the representation and prediction accuracy of students’ knowledge states. Experiments on three datasets show that our models outperform ten benchmark models. On the most sparse dataset, QCE-KT and QVE-KT improve their performance by 16.44% and 14.78%, respectively, compared to DKT. Although QC is still in the developmental stage, this study reveals the great potential of QM in personalized KT, which provides new perspectives for solving personalized instruction problems and opens up new directions for applying QC in education.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102224"},"PeriodicalIF":5.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142553296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DA-Net: A classification-guided network for dental anomaly detection from dental and maxillofacial images DA-Net:从牙科和颌面部图像中检测牙科异常的分类指导网络
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-11-01 DOI: 10.1016/j.jksuci.2024.102229
Jiaxing Li
{"title":"DA-Net: A classification-guided network for dental anomaly detection from dental and maxillofacial images","authors":"Jiaxing Li","doi":"10.1016/j.jksuci.2024.102229","DOIUrl":"10.1016/j.jksuci.2024.102229","url":null,"abstract":"<div><div>Dental abnormalities (DA) are frequent signs of disorders of the mouth that cause discomfort, infection, and loss of teeth. Early and reasonably priced treatment may be possible if defective teeth in the oral cavity are automatically detected. Several research works have endeavored to create a potent deep learning model capable of identifying DA from pictures. However, because of the following problems, aberrant teeth from the oral cavity are difficult to detect: 1) Normal teeth and crowded dentition frequently overlap; 2) The lesion area on the tooth surface is tiny. This paper proposes a professional dental anomaly detection network (DA-Net) to address such issues. First, a multi-scale dense connection module (MSDC) is designed to distinguish crowded teeth from normal teeth by learning multi-scale spatial information of dentition. Then, a pixel differential convolution (PDC) module is designed to perform pathological tooth recognition by extracting small lesion features. Finally, a multi-stage convolutional attention module (MSCA) is developed to integrate spatial information and channel information to obtain abnormal teeth in small areas. Experiments on benchmarks show that DA-Net performs well in dental anomaly detection and can further assist doctors in making treatment plans. Specifically, the DA-Net method performs best on multiple detection evaluation metrics: IoU, PRE, REC, and mAP. In terms of REC and mAP indicators, the proposed DA-Net method is 1.1% and 1.3% higher than the second-ranked YOLOv7 method.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102229"},"PeriodicalIF":5.2,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142578584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep indoor illumination estimation based on spherical gaussian representation with scene prior knowledge 基于球形高斯表示和场景先验知识的深度室内光照度估计
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-23 DOI: 10.1016/j.jksuci.2024.102222
Chao Xu , Cheng Han , Huamin Yang , Chao Zhang , Shiyu Lu
{"title":"Deep indoor illumination estimation based on spherical gaussian representation with scene prior knowledge","authors":"Chao Xu ,&nbsp;Cheng Han ,&nbsp;Huamin Yang ,&nbsp;Chao Zhang ,&nbsp;Shiyu Lu","doi":"10.1016/j.jksuci.2024.102222","DOIUrl":"10.1016/j.jksuci.2024.102222","url":null,"abstract":"<div><div>High dynamic range (HDR) illumination estimation from a single low dynamic range image is a critical task in the fields of computer vision, graphics and augmented reality. However, directly learning the full HDR environment map or parametric lighting information from a single image is extremely difficult and inaccurate. As a result, we propose a two-stage network approach for illumination estimation that integrates spherical gaussian (SG) representation with scene prior knowledge. In the first stage, a convolutional neural network is utilized to generate material and geometric information about the scene, which serves as prior knowledge for lighting prediction. In the second stage, we model indoor environment illumination using 128 SG functions with fixed center direction and bandwidth, allowing only the amplitude to vary. Subsequently, a Transformer-based lighting parameter regressor is employed to capture the complex relationship between the input images with scene prior information and its SG illumination. Additionally, we introduce a hybrid loss function, which combines a masked loss for high-frequency illumination with a rendering loss for improving the visual quality. By training and evaluating the lighting model on the created SG illumination dataset, the proposed method achieves competitive results in both quantitative metrics and visual quality, outperforming state-of-the-art methods.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102222"},"PeriodicalIF":5.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142657924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced UrduAspectNet: Leveraging Biaffine Attention for superior Aspect-Based Sentiment Analysis 增强型 UrduAspectNet:利用双峰注意力实现卓越的基于方面的情感分析
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-23 DOI: 10.1016/j.jksuci.2024.102221
Kamran Aziz , Naveed Ahmed , Hassan Jalil Hadi , Aizihaierjiang Yusufu , Mohammaed Ali Alshara , Yasir Javed , Donghong Ji
{"title":"Enhanced UrduAspectNet: Leveraging Biaffine Attention for superior Aspect-Based Sentiment Analysis","authors":"Kamran Aziz ,&nbsp;Naveed Ahmed ,&nbsp;Hassan Jalil Hadi ,&nbsp;Aizihaierjiang Yusufu ,&nbsp;Mohammaed Ali Alshara ,&nbsp;Yasir Javed ,&nbsp;Donghong Ji","doi":"10.1016/j.jksuci.2024.102221","DOIUrl":"10.1016/j.jksuci.2024.102221","url":null,"abstract":"<div><div>Urdu, with its rich linguistic complexity, poses significant challenges for computational sentiment analysis. This study presents an enhanced version of UrduAspectNet, specifically designed for Aspect-Based Sentiment Analysis (ABSA) in Urdu. We introduce key innovations including the incorporation of Biaffine Attention into the model architecture, which synergizes XLM-R embeddings, a bidirectional LSTM (BiLSTM), and dual Graph Convolutional Networks (GCNs). Additionally, we utilize dependency parsing to create the adjacency matrix for the GCNs, capturing syntactic dependencies to enhance relational representation. The improved model, termed Enhanced UrduAspectNet, integrates POS and lemma embeddings, processed through BiLSTM and GCN layers, with Biaffine Attention enhancing the extraction of intricate aspect and sentiment relationships. We also introduce the use of BIO tags for aspect term identification, improving the granularity of aspect extraction. Experimental results demonstrate significant improvements in both aspect extraction and sentiment classification accuracy. This research advances Urdu sentiment analysis and sets a precedent for leveraging sophisticated NLP techniques in underrepresented languages.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102221"},"PeriodicalIF":5.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Echocardiographic mitral valve segmentation model 超声心动图二尖瓣分割模型
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-19 DOI: 10.1016/j.jksuci.2024.102218
Chunxia Liu , Shanshan Dong , Feng Xiong , Luqing Wang , Bolun Li , Hongjun Wang
{"title":"Echocardiographic mitral valve segmentation model","authors":"Chunxia Liu ,&nbsp;Shanshan Dong ,&nbsp;Feng Xiong ,&nbsp;Luqing Wang ,&nbsp;Bolun Li ,&nbsp;Hongjun Wang","doi":"10.1016/j.jksuci.2024.102218","DOIUrl":"10.1016/j.jksuci.2024.102218","url":null,"abstract":"<div><div>Segmentation of mitral valve is not only important for clinical diagnosis, but also has far-reaching impact on prevention and prognosis of the disease by experts and doctors. In this paper, the multi-channel cross fusion transformer based U-Net network model (MCCT-UNet) is proposed according to the classical U-Net architecture. First, the jump connection part of MCCT-UNet is designed by using a multi-channel cross-fusion based attention mechanism module (MCCT) instead of the original jump connection, and this module fuses the feature maps from different scales in different stages of the encoder. Second, the optimization of the feature fusion method is proposed in the decoding stage by designing the cross-compression excitation sub-module (C-SENet) to replace the simple feature splicing, and the C-SENet is used to bridge the inconsistency of the semantic hierarchy by effectively combining the deeper information in the encoding stage with the shallower information. This two modules can establish a close connection between the encoder and decoder by exploring multi-scale global contextual information to solve the semantic divide problem, thus it significantly improves the segmentation performance of the network. The experimental results show that the improvement is effective, and the MCCT-UNet model outperforms the other 9 network models. Specifically, the MCCT-UNet achieved a Dice coefficient of 0.8734, an IoU of 0.7854, and an accuracy of 0.9977, demonstrating significant improvements over the compared models.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102218"},"PeriodicalIF":5.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Firefly forest: A swarm iteration-free swarm intelligence clustering algorithm 萤火虫森林无迭代群集智能聚类算法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-18 DOI: 10.1016/j.jksuci.2024.102219
Shijie Zeng , Yuefei Wang , Yukun Wen , Xi Yu , Binxiong Li , Zixu Wang
{"title":"Firefly forest: A swarm iteration-free swarm intelligence clustering algorithm","authors":"Shijie Zeng ,&nbsp;Yuefei Wang ,&nbsp;Yukun Wen ,&nbsp;Xi Yu ,&nbsp;Binxiong Li ,&nbsp;Zixu Wang","doi":"10.1016/j.jksuci.2024.102219","DOIUrl":"10.1016/j.jksuci.2024.102219","url":null,"abstract":"<div><div>The Firefly Forest algorithm is a novel bio-inspired clustering method designed to address key challenges in traditional clustering techniques, such as the need to set a fixed number of neighbors, predefine cluster numbers, and rely on computationally intensive swarm iterative processes. The algorithm begins by using an adaptive neighbor estimation, refined to filter outliers, to determine the brightness of each firefly. This brightness guides the formation of firefly trees, which are then merged into cohesive firefly forests, completing the clustering process. This approach allows the algorithm to dynamically capture both local and global patterns, eliminate the need for predefined cluster numbers, and operate with low computational complexity. Experiments involving 14 established clustering algorithms across 19 diverse datasets, using 8 evaluative metrics, demonstrate the Firefly Forest algorithm’s superior accuracy and robustness. These results highlight its potential as a powerful tool for real-world clustering applications. Our code is available at: https://github.com/firesaku/FireflyForest.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102219"},"PeriodicalIF":5.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IMOABC: An efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection IMOABC:用于高维特征选择的高效多目标滤波器-包装器混合方法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-09 DOI: 10.1016/j.jksuci.2024.102205
Jiahao Li , Tao Luo, Baitao Zhang, Min Chen, Jie Zhou
{"title":"IMOABC: An efficient multi-objective filter–wrapper hybrid approach for high-dimensional feature selection","authors":"Jiahao Li ,&nbsp;Tao Luo,&nbsp;Baitao Zhang,&nbsp;Min Chen,&nbsp;Jie Zhou","doi":"10.1016/j.jksuci.2024.102205","DOIUrl":"10.1016/j.jksuci.2024.102205","url":null,"abstract":"<div><div>With the development of data science, the challenge of high-dimensional data has become increasingly prevalent. High-dimensional data contains a significant amount of redundant information, which can adversely affect the performance and effectiveness of machine learning algorithms. Therefore, it is necessary to select the most relevant features from the raw data and perform feature selection on high-dimensional data. In this paper, a novel filter–wrapper feature selection method based on an improved multi-objective artificial bee colony algorithm (IMOABC) is proposed to address the feature selection problem in high-dimensional data. This method simultaneously considers three objectives: feature error rate, feature subset ratio, and distance, effectively improving the efficiency of obtaining the optimal feature subset on high-dimensional data. Additionally, a novel Fisher Score-based initialization strategy is introduced, significantly enhancing the quality of solutions. Furthermore, a new dynamic adaptive strategy is designed, effectively improving the algorithm’s convergence speed and enhancing its global search capability. Comparative experimental results on microarray cancer datasets demonstrate that the proposed method significantly improves classification accuracy and effectively reduces the size of the feature subset when compared to various traditional and state-of-the-art multi-objective feature selection algorithms. IMOABC improves the classification accuracy by 2.27% on average compared to various multi-objective feature selection methods, while reducing the number of selected features by 88.76% on average. Meanwhile, IMOABC shows an average improvement of 4.24% in classification accuracy across all datasets, with an average reduction of 76.73% in the number of selected features compared to various traditional methods.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102205"},"PeriodicalIF":5.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced security measures in coupled phase-shift STAR-RIS networks: A DRL approach 耦合相移 STAR-RIS 网络中的高级安全措施:DRL 方法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-09 DOI: 10.1016/j.jksuci.2024.102215
Abdul Wahid , Syed Zain Ul Abideen , Manzoor Ahmed , Wali Ullah Khan , Muhammad Sheraz , Teong Chee Chuah , Ying Loong Lee
{"title":"Advanced security measures in coupled phase-shift STAR-RIS networks: A DRL approach","authors":"Abdul Wahid ,&nbsp;Syed Zain Ul Abideen ,&nbsp;Manzoor Ahmed ,&nbsp;Wali Ullah Khan ,&nbsp;Muhammad Sheraz ,&nbsp;Teong Chee Chuah ,&nbsp;Ying Loong Lee","doi":"10.1016/j.jksuci.2024.102215","DOIUrl":"10.1016/j.jksuci.2024.102215","url":null,"abstract":"<div><div>The rapid development of next-generation wireless networks has intensified the need for robust security measures, particularly in environments susceptible to eavesdropping. Simultaneous transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS) have emerged as a transformative technology, offering full-space coverage by manipulating electromagnetic wave propagation. However, the inherent flexibility of STAR-RIS introduces new vulnerabilities, making secure communication a significant challenge. To overcome these challenges, we propose a deep reinforcement learning (DRL) based secure and efficient beamforming optimization strategy, leveraging the deep deterministic policy gradient (DDPG) algorithm. By framing the problem as a Markov decision process (MDP), our approach enables the DDPG algorithm to learn optimal strategies for beamforming and transmission and reflection coefficients (TARCs) configurations. This method is specifically designed to optimize phase-shift coefficients within the STAR-RIS environment, effectively managing the coupled phase shifts and complex interactions that are critical for enhancing physical layer security (PLS). Through extensive simulations, we demonstrate that our DRL-based strategy not only outperforms traditional optimization techniques but also achieves real-time adaptive optimization, significantly improving both confidentiality and network efficiency. This research addresses key gaps in secure wireless communication and sets a new standard for future advancements in intelligent, adaptable network technologies.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102215"},"PeriodicalIF":5.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142432505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endoscopic video aided identification method for gastric area 内窥镜视频辅助胃区识别方法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-10-05 DOI: 10.1016/j.jksuci.2024.102208
Xiangwei Zheng, Dejian Su, Xuanchi Chen, Mingzhe Zhang
{"title":"Endoscopic video aided identification method for gastric area","authors":"Xiangwei Zheng,&nbsp;Dejian Su,&nbsp;Xuanchi Chen,&nbsp;Mingzhe Zhang","doi":"10.1016/j.jksuci.2024.102208","DOIUrl":"10.1016/j.jksuci.2024.102208","url":null,"abstract":"<div><div>Probe-based confocal laser endomicroscopy (pCLE) is a significant diagnostic instrument and is frequently utilized to diagnose the severity of gastric intestinal metaplasia (GIM). The physicians must comprehensively analyze video clips recorded with pCLE from the gastric antrum, gastric body, and gastric angle area to determine the patient’s condition. However, due to the limitations of the pCLE’s microscopic imaging structure, the gastric areas detected cannot be identified and recorded in real time, which may poses a risk of missing potential areas of disease occurrence and is not conducive to the subsequent precise treatment of the lesion area. Therefore, this paper proposes an endoscopic video aided identification method for identifying gastric areas (EVIGA), which are utilized for determining the detected areas of pCLE in real-time. Firstly, the start time of the diagnosis clip is determined by real-time detecting the working states of pCLE. Then, the endoscopic video clip is truncated according to the correspondence between pCLE and endoscopic video in the time sequence for detecting gastric areas. In order to accurately identify pCLE detected gastric areas, a probe-based confocal laser endomicroscopy diagnosis area identification model (pCLEDAM) is constructed with an hourglass convolution designed for single-frame feature extraction and a temporal feature-sensitive extraction structure for spatial feature extraction. The extracted feature maps are unfolded and fed into the fully connected layer to classify the detected areas. To validate the proposed method, 67 clinical confocal laser endomicroscopy diagnosis cases are collected from a tertiary care hospital, and 500 video clips are finally reserved after audited for dataset construction. Experiments show that the accuracy of area identification on the test dataset achieves 96.0% and is much higher than other related algorithms, achieving the accurate identification of pCLE detected areas.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 9","pages":"Article 102208"},"PeriodicalIF":5.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信