CRNet:用于息肉分割的级联细化网络

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Xiaolan Wen , Anwen Zhang , Chuan Lin , Xintao Pang
{"title":"CRNet:用于息肉分割的级联细化网络","authors":"Xiaolan Wen ,&nbsp;Anwen Zhang ,&nbsp;Chuan Lin ,&nbsp;Xintao Pang","doi":"10.1016/j.jksuci.2024.102250","DOIUrl":null,"url":null,"abstract":"<div><div>Technology for automatic segmentation plays a crucial role in the early diagnosis and treatment of ColoRectal Cancer (CRC). Existing polyp segmentation methods often focus on advanced feature extraction while neglecting detailed low-level features, This somewhat limits the enhancement of segmentation performance. This paper proposes a new technique called the Cascaded Refinement Network (CRNet), designed to improve polyp segmentation performance by combining low-level and high-level features through a cascaded contextual network structure. To accurately capture the morphological variations of polyps and enhance the clarity of segmentation boundaries, we have designed the Multi-Scale Feature Optimization (MFO) module and the Contextual Edge Guidance (CEG) module. Additionally, to further enhance feature fusion and utilization, we introduced the Cascaded Local Feature Fusion (CLFF) module, which effectively integrates cross-layer correlations, allowing the network to understand complex polyp structures better. By conducting a large number of experiments, our model achieved a 0.3% and 3.1% higher mDice score than the latest MMFIL-Net in the two main datasets of Kvasir-SEG and CVC-ClinicDB, respectively. Ablation studies show that MFO improves the baseline score by 4%, and the network without CLFF and CEG results in a reduction of 2.4% and 1.7% in mDice scores, respectively. This further validates the contribution of each module to the polyp segmentation performance. CRNet enhances model performance through the introduction of multiple modules but also increases model complexity. Future work will explore how to reduce computational complexity and improve inference speed while maintaining high performance. The source code for this paper can be found at <span><span>https://github.com/l1986036/CRNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102250"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRNet: Cascaded Refinement Network for polyp segmentation\",\"authors\":\"Xiaolan Wen ,&nbsp;Anwen Zhang ,&nbsp;Chuan Lin ,&nbsp;Xintao Pang\",\"doi\":\"10.1016/j.jksuci.2024.102250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Technology for automatic segmentation plays a crucial role in the early diagnosis and treatment of ColoRectal Cancer (CRC). Existing polyp segmentation methods often focus on advanced feature extraction while neglecting detailed low-level features, This somewhat limits the enhancement of segmentation performance. This paper proposes a new technique called the Cascaded Refinement Network (CRNet), designed to improve polyp segmentation performance by combining low-level and high-level features through a cascaded contextual network structure. To accurately capture the morphological variations of polyps and enhance the clarity of segmentation boundaries, we have designed the Multi-Scale Feature Optimization (MFO) module and the Contextual Edge Guidance (CEG) module. Additionally, to further enhance feature fusion and utilization, we introduced the Cascaded Local Feature Fusion (CLFF) module, which effectively integrates cross-layer correlations, allowing the network to understand complex polyp structures better. By conducting a large number of experiments, our model achieved a 0.3% and 3.1% higher mDice score than the latest MMFIL-Net in the two main datasets of Kvasir-SEG and CVC-ClinicDB, respectively. Ablation studies show that MFO improves the baseline score by 4%, and the network without CLFF and CEG results in a reduction of 2.4% and 1.7% in mDice scores, respectively. This further validates the contribution of each module to the polyp segmentation performance. CRNet enhances model performance through the introduction of multiple modules but also increases model complexity. Future work will explore how to reduce computational complexity and improve inference speed while maintaining high performance. The source code for this paper can be found at <span><span>https://github.com/l1986036/CRNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 10\",\"pages\":\"Article 102250\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824003392\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003392","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自动分割技术在结直肠癌(CRC)的早期诊断和治疗中发挥着至关重要的作用。现有的息肉分割方法往往侧重于高级特征提取,而忽略了详细的低级特征,这在一定程度上限制了分割性能的提高。本文提出了一种名为级联细化网络(CRNet)的新技术,旨在通过级联上下文网络结构结合低级和高级特征来提高息肉分割性能。为了准确捕捉息肉的形态变化并提高分割边界的清晰度,我们设计了多尺度特征优化(MFO)模块和上下文边缘引导(CEG)模块。此外,为了进一步提高特征融合和利用率,我们还引入了级联局部特征融合(CLFF)模块,有效整合了跨层相关性,使网络能够更好地理解复杂的息肉结构。通过大量实验,我们的模型在 Kvasir-SEG 和 CVC-ClinicDB 两个主要数据集中的 mDice 得分分别比最新的 MMFIL-Net 高出 0.3% 和 3.1%。消融研究表明,MFO 可将基线分数提高 4%,而不含 CLFF 和 CEG 的网络可将 mDice 分数分别降低 2.4% 和 1.7%。这进一步验证了每个模块对息肉分割性能的贡献。CRNet 通过引入多个模块提高了模型性能,但也增加了模型的复杂性。未来的工作将探索如何在保持高性能的同时降低计算复杂度和提高推理速度。本文的源代码见 https://github.com/l1986036/CRNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRNet: Cascaded Refinement Network for polyp segmentation
Technology for automatic segmentation plays a crucial role in the early diagnosis and treatment of ColoRectal Cancer (CRC). Existing polyp segmentation methods often focus on advanced feature extraction while neglecting detailed low-level features, This somewhat limits the enhancement of segmentation performance. This paper proposes a new technique called the Cascaded Refinement Network (CRNet), designed to improve polyp segmentation performance by combining low-level and high-level features through a cascaded contextual network structure. To accurately capture the morphological variations of polyps and enhance the clarity of segmentation boundaries, we have designed the Multi-Scale Feature Optimization (MFO) module and the Contextual Edge Guidance (CEG) module. Additionally, to further enhance feature fusion and utilization, we introduced the Cascaded Local Feature Fusion (CLFF) module, which effectively integrates cross-layer correlations, allowing the network to understand complex polyp structures better. By conducting a large number of experiments, our model achieved a 0.3% and 3.1% higher mDice score than the latest MMFIL-Net in the two main datasets of Kvasir-SEG and CVC-ClinicDB, respectively. Ablation studies show that MFO improves the baseline score by 4%, and the network without CLFF and CEG results in a reduction of 2.4% and 1.7% in mDice scores, respectively. This further validates the contribution of each module to the polyp segmentation performance. CRNet enhances model performance through the introduction of multiple modules but also increases model complexity. Future work will explore how to reduce computational complexity and improve inference speed while maintaining high performance. The source code for this paper can be found at https://github.com/l1986036/CRNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信