Binocular camera-based visual localization with optimized keypoint selection and multi-epipolar constraints

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Guanyuan Feng, Yu Liu, Weili Shi, Yu Miao
{"title":"Binocular camera-based visual localization with optimized keypoint selection and multi-epipolar constraints","authors":"Guanyuan Feng,&nbsp;Yu Liu,&nbsp;Weili Shi,&nbsp;Yu Miao","doi":"10.1016/j.jksuci.2024.102228","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, visual localization has gained significant attention as a key technology for indoor navigation due to its outstanding accuracy and low deployment costs. However, it still encounters two primary challenges: the requirement for multiple database images to match the query image and the potential degradation of localization precision resulting from the keypoints clustering and mismatches. In this research, a novel visual localization framework based on a binocular camera is proposed to estimate the absolute positions of the query camera. The framework integrates three core methods: the multi-epipolar constraints-based localization (MELoc) method, the Optimal keypoint selection (OKS) method, and a robust measurement method. MELoc constructs multiple geometric constraints to enable absolute position estimation with only a single database image, while OKS and the robust measurement method further enhance localization accuracy by refining the precision of these geometric constraints. Experimental results demonstrate that the proposed system consistently outperforms existing visual localization systems across various scene scales, database sampling intervals, and lighting conditions</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102228"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003173","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, visual localization has gained significant attention as a key technology for indoor navigation due to its outstanding accuracy and low deployment costs. However, it still encounters two primary challenges: the requirement for multiple database images to match the query image and the potential degradation of localization precision resulting from the keypoints clustering and mismatches. In this research, a novel visual localization framework based on a binocular camera is proposed to estimate the absolute positions of the query camera. The framework integrates three core methods: the multi-epipolar constraints-based localization (MELoc) method, the Optimal keypoint selection (OKS) method, and a robust measurement method. MELoc constructs multiple geometric constraints to enable absolute position estimation with only a single database image, while OKS and the robust measurement method further enhance localization accuracy by refining the precision of these geometric constraints. Experimental results demonstrate that the proposed system consistently outperforms existing visual localization systems across various scene scales, database sampling intervals, and lighting conditions
通过优化关键点选择和多极性约束进行基于双目摄像头的视觉定位
近年来,视觉定位因其出色的精度和较低的部署成本成为室内导航的一项关键技术,受到广泛关注。然而,它仍然面临两个主要挑战:一是需要多个数据库图像来匹配查询图像,二是关键点聚类和不匹配可能导致定位精度下降。本研究提出了一种基于双目摄像头的新型视觉定位框架,用于估算查询摄像头的绝对位置。该框架集成了三种核心方法:基于多极约束的定位(MELoc)方法、最优关键点选择(OKS)方法和稳健测量方法。MELoc 构建了多个几何约束条件,只需一张数据库图像即可实现绝对位置估算,而 OKS 和稳健测量方法则通过完善这些几何约束条件的精度来进一步提高定位精度。实验结果表明,在不同的场景尺度、数据库采样间隔和照明条件下,所提出的系统始终优于现有的视觉定位系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信