{"title":"Binocular camera-based visual localization with optimized keypoint selection and multi-epipolar constraints","authors":"Guanyuan Feng, Yu Liu, Weili Shi, Yu Miao","doi":"10.1016/j.jksuci.2024.102228","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, visual localization has gained significant attention as a key technology for indoor navigation due to its outstanding accuracy and low deployment costs. However, it still encounters two primary challenges: the requirement for multiple database images to match the query image and the potential degradation of localization precision resulting from the keypoints clustering and mismatches. In this research, a novel visual localization framework based on a binocular camera is proposed to estimate the absolute positions of the query camera. The framework integrates three core methods: the multi-epipolar constraints-based localization (MELoc) method, the Optimal keypoint selection (OKS) method, and a robust measurement method. MELoc constructs multiple geometric constraints to enable absolute position estimation with only a single database image, while OKS and the robust measurement method further enhance localization accuracy by refining the precision of these geometric constraints. Experimental results demonstrate that the proposed system consistently outperforms existing visual localization systems across various scene scales, database sampling intervals, and lighting conditions</div></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 10","pages":"Article 102228"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824003173","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, visual localization has gained significant attention as a key technology for indoor navigation due to its outstanding accuracy and low deployment costs. However, it still encounters two primary challenges: the requirement for multiple database images to match the query image and the potential degradation of localization precision resulting from the keypoints clustering and mismatches. In this research, a novel visual localization framework based on a binocular camera is proposed to estimate the absolute positions of the query camera. The framework integrates three core methods: the multi-epipolar constraints-based localization (MELoc) method, the Optimal keypoint selection (OKS) method, and a robust measurement method. MELoc constructs multiple geometric constraints to enable absolute position estimation with only a single database image, while OKS and the robust measurement method further enhance localization accuracy by refining the precision of these geometric constraints. Experimental results demonstrate that the proposed system consistently outperforms existing visual localization systems across various scene scales, database sampling intervals, and lighting conditions
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.