{"title":"Control of spin liquid-like dynamics by geometry of 2D nanocluster networks","authors":"Makoto Sakurai","doi":"10.1016/j.mtnano.2024.100541","DOIUrl":"10.1016/j.mtnano.2024.100541","url":null,"abstract":"<div><div>Network structures of magnetic molecular assemblies on a two-dimensional (2D) material are attractive platforms for molecular spintronics and for the study of 2D magnetic materials. However, it is still a challenging task to connect such assemblies with appropriate magnetic interactions. Recently, uniform nanoclusters consisting of about 100 magnetic amino-ferrocene molecules were self-organized on a graphene oxide nanosheet by on-surface synthesis. Here, the dynamics of weakly interacting molecular spins in the nanocluster networks is investigated by exploiting the tunability of the intercluster distance through the chemical reaction. The stochastic simulation shows that the entanglement of the spin orientations at the sites in the nanocluster by magnetic dipole interactions leads to a liquid-like behavior of the spins (<em>S</em> = 5/2) at <em>T</em> ≲ 15 K, generating spin correlations and slow dynamics observed in Mössbauer spectroscopy and magnetic susceptibility. The energy barrier for generating magnetic relaxation and the deviation temperature from classical, thermally activated relaxation depend on the intercluster distance, i.e., the magnetic interactions between the nanoclusters, indicating that the relaxation can be tuned by the geometry of the nanocluster networks. The present results pave the way for the chemical design of 2D nanocluster networks and chemically functionalized 2D materials.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100541"},"PeriodicalIF":8.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142705037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lianjun Wen , Dunyuan Liao , Lei Liu , Fengyue He , Ran Zhuo , Xiyu Hou , Dong Pan , Jianhua Zhao
{"title":"Metal-sown selective area growth of high crystalline quality InAsSb nanowires and networks by molecular-beam epitaxy","authors":"Lianjun Wen , Dunyuan Liao , Lei Liu , Fengyue He , Ran Zhuo , Xiyu Hou , Dong Pan , Jianhua Zhao","doi":"10.1016/j.mtnano.2024.100537","DOIUrl":"10.1016/j.mtnano.2024.100537","url":null,"abstract":"<div><div>Scalable in-plane InAsSb nanowires and networks have attracted intense research interest in optoelectronics and quantum computation. However, the poor crystalline quality of InAsSb nanowires and networks limits the development of high-performance nanodevices. Here, we report the growth of high crystalline quality InAsSb nanowires and networks on patterned Ge substrates by molecular-beam epitaxy. We find that high crystalline quality InAsSb nanowires can be successfully achieved by the conventional selective area growth route. But continuous nanowires and networks cannot be obtained by this growth manner. To overcome this problem, a metal-sown selective area growth route is developed. By precisely tuning the growth parameters, the well-aligned InAsSb nanowires and networks have been successfully fabricated. It is determined that the morphologies of nanowires and networks are dependent on the local growth rate and the V/III ratio, and the V/III ratio has an obvious effect on the polarity of nanowires and networks. Detailed structural studies confirm that these well-faceted nanowires are pure zinc blende single crystals, and there is a strict epitaxial relationship between the nanowire and the substrate. The energy dispersive spectroscopy analyses indicate that the Sb content is evenly distributed along the in-plane direction and has an obvious gradient along the out-of-plane direction. The successful fabrication of high crystalline quality InAsSb nanowires and networks provides new opportunities for exploring potential optoelectronic applications.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100537"},"PeriodicalIF":8.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142663710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jesús Cebollada , David Sebastián , Jun Yamasaki , Javier Agúndez , Maria Jesús Lázaro , Maria Victoria Martínez-Huerta
{"title":"Building robust copper nanostructures via carbon coating derived from polydopamine for oxygen reduction reaction","authors":"Jesús Cebollada , David Sebastián , Jun Yamasaki , Javier Agúndez , Maria Jesús Lázaro , Maria Victoria Martínez-Huerta","doi":"10.1016/j.mtnano.2024.100536","DOIUrl":"10.1016/j.mtnano.2024.100536","url":null,"abstract":"<div><div>This study explores the synthesis and electrocatalytic performance of copper-nitrogen-carbon composites formed by Cu single atoms/clusters embedded in nitrogen-doped carbon with Cu/Cu<sub>2</sub>O nanoparticles (Cu-X-NC) for the oxygen reduction reaction (ORR). The catalysts were synthesized using polydopamine as a carbon and nitrogen source via the solvothermal carbonization (STC) method, followed by pyrolysis and acid washing. The effect of solvothermal carbonization temperature (120, 150, and 180 °C) on the structure and ORR activity was investigated. The physicochemical characterization showed that higher STC temperatures reduced the size of copper crystallites, slightly increased the formation of copper(I) oxide, and led to the creation of well-dispersed copper single atoms/clusters at 150 °C. This optimal dispersion enhances the interaction between the copper single atoms and the reactants, leading to faster ORR kinetics, as demonstrated by the lower charge transfer resistance values in electrochemical impedance spectroscopy measurements. Additionally, the balance between micropore and mesopore structures at this temperature facilitates efficient mass transport, which is critical for achieving higher ORR activity. Moreover, accelerated stability tests showed excellent durability for Cu-150-NC, with negligible loss in onset potential after 10,000 cycles. The solvothermal process significantly increased the electrochemically active surface area (ECSA), with Cu-150-NC displaying the highest specific activity and mass activity per gram of copper, indicating superior performance. Overall, these findings underscore the importance of synthesis optimization and provide valuable insights for designing eco-friendly and high-performance copper catalysts for fuel cell applications.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100536"},"PeriodicalIF":8.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142572439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"PAM material that instantly gives ordinary fabrics excellent flame retardant and thermal insulation properties for fire rescue","authors":"Bibo Zhou , Xiaoming Zhao , Yuanjun Liu","doi":"10.1016/j.mtnano.2024.100535","DOIUrl":"10.1016/j.mtnano.2024.100535","url":null,"abstract":"<div><div>To effectively reduce the damage caused by flame burns or heat transfer to the human body during fire, we used PAM aqueous solution as the matrix, XG as the thickener, HPMC as the water-retaining agent to form the basic material system, and added different functional particles (APP, PTW, HCB) to prepare a fire-proof and heat-insulating PAM flame-retardant material for fire emergency rescue. Ordinary cotton fabrics were impregnated into PAM flame-retardant materials using a simple impregnation process. After the impregnation, the test was performed in a non-dropping state (simulating the thermal protection effect of PAM flame retardant materials directly acting on the outside of the human body at the fire scene). The results show that the PAM flame retardant material prepared by adding 4 wt% HCB has the best comprehensive performance. TPP test shows that spraying PAM flame retardant material on the outside of the fabric can instantly give the fabric a higher thermal protection performance. Under the total heat flux of 84 kW/m<sup>2</sup>, the thermal performance protection value of the fabric is 2641.8 kW s/m<sup>2</sup>, and the second-degree burn time can reach 31.45 s. PAM flame retardant material does not damage the fabric. After soaping, the air permeability of the fabric decreases slightly, the moisture permeability and wettability are improved, and the breaking strength is almost unchanged. The CCT test showed that the thermal radiation flux was 50 kW/m<sup>2</sup>, the PHRR value of PAM flame retardant material was 10.64552 kW/m<sup>2</sup>, the THR was 6.9 MJ/m<sup>2</sup>, and the flame retardant performance was excellent. The PAM flame retardant material prepared in this project can be applied to the fire scene and directly sprayed on the outside of the clothing of rescuers and recipients, giving the fabric a better thermal protection effect. It can also be used to extinguish fires in the external environment. This material offers a novel solution for enhancing fire rescuers' and victims' safety protection levels.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100535"},"PeriodicalIF":8.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Gao , Qian Yang , Li Ma , Tian Li , Qing Qi , Tian Yang , Fanbin Meng
{"title":"Radar-infrared compatible stealth technology in advanced nano-composite materials: Mechanisms and structural optimization","authors":"Yi Gao , Qian Yang , Li Ma , Tian Li , Qing Qi , Tian Yang , Fanbin Meng","doi":"10.1016/j.mtnano.2024.100534","DOIUrl":"10.1016/j.mtnano.2024.100534","url":null,"abstract":"<div><div>Nowadays, multifunctional detection systems and reverse detection technologies play a dominant role in military reconnaissance and stealth gaming operations. Therefore, stealth technology, as the most powerful means of reverse detection, has increasingly become a research hot spot. In particular, when the detection weapons are equipped with radar and infrared detection, how to achieve effective compatibility of stealth to minimize the loss and the success of military operations is still a major challenge in current research. Therefore, this review provides an indepth discussion and distinction between the mechanisms of radar and infrared detection technologies, respectively, while emphasizing the technical challenges involved in achieving compatible stealth. Besides, the review explores the microwave absorption and infrared stealth properties of innovative advanced nano-composites materials (MXene, graphene, and metal-organic frameworks (MOFs)) reported to date. Subsequently, the review analyzes the properties, structural design, and optimization strategies of recently reported compatible stealth materials, ranging from low-dimensional to high-dimensional structures, and discusses in detail the recent advances in compatible stealth materials. Finally, the review summarizes the advantages of developing various materials and structures in this promising field, providing a comprehensive overview of their potential and efficacy.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100534"},"PeriodicalIF":8.2,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced polarization sensitivity and tunability in truncated pyramidal GaAs quantum dots for FIR applications","authors":"Suphawich Jindanate , Phatlada Sathongpaen , Attapon Amthong","doi":"10.1016/j.mtnano.2024.100533","DOIUrl":"10.1016/j.mtnano.2024.100533","url":null,"abstract":"<div><div>The far-infrared (FIR) spectrum, covering wavelengths from 20 to 1000 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>, presents significant challenges for the manipulation and detection of polarized light, especially in the short-wavelength FIR range of 20–100 <span><math><mrow><mi>μ</mi><mi>m</mi></mrow></math></span>. This study investigates the effectiveness of truncated pyramidal GaAs quantum dots in improving the absorption coefficient of polarized light within this range. Utilizing the finite difference method to obtain numerical solutions of the Schrödinger equation within the adiabatic approximation, we analyze the effects of various base shapes—equilateral hexagon, irregular hexagon, and equilateral triangle—on the optical absorption coefficients when subjected to an electric field with different directions and magnitudes. Our results reveal that triangular pyramidal quantum dots offer enhanced polarization sensitivity and greater tunability of absorption peaks compared to structures with other base shapes. Moreover, the direction of the applied electric field is crucial for tuning the absorption peaks in the desired range of FIR wavelength. These findings demonstrate the potential of truncated pyramidal GaAs quantum dots not only for improving sensing technologies but also for managing electromagnetic interference in advanced communication systems.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100533"},"PeriodicalIF":8.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A highly permeable nanoplatform based on functionalized carbon dots for synergistic reactive oxygen/nitrogen species tumor therapy","authors":"Jiangyong Li, Qin Li, Qian Yang, Qi Tang, Xiaoyi Hu, Qing Liu, Liangke Zhang","doi":"10.1016/j.mtnano.2024.100532","DOIUrl":"10.1016/j.mtnano.2024.100532","url":null,"abstract":"<div><div>Reactive oxygen species (ROS)-based antitumor strategies, particularly chemodynamic therapy, have garnered considerable attention. However, challenges such as difficulties in achieving deep penetration, relatively low H<sub>2</sub>O<sub>2</sub> levels in the tumor microenvironment, the requirement for low pH by the Fenton reaction, and their short lifespan have impeded satisfactory therapeutic outcomes. Hence, we have developed a nanoplatform with enhanced permeability that not only generates significant amounts of ROS but also converts them into longer-lasting reactive nitrogen species (RNS), thereby improving tumor therapy efficacy. In our study, carbon dots were functionalized by doping with gold atoms and grafting nitrosoglutathione (GSNO) to form ACN, which exhibits glucose oxidase-like properties and enables laser-responsive NO release. ACN and indocyanine green (ICG) were then loaded onto MnO<sub>2</sub> nanoflowers to form MnO<sub>2</sub>@AI. Upon arrival at the tumor site, MnO<sub>2</sub> reacts with H<sub>2</sub>O<sub>2</sub> and GSH, leading to its degradation and the subsequent release of ACN, which is characterized by three permeation-promoting properties: ultra-small size, positive charge, and NO content. In addition, ACN promotes H<sub>2</sub>O<sub>2</sub> production through glucose metabolism and reduces pH, both of which enhance the Fenton-like reaction of MnO<sub>2</sub>, thereby amplifying ROS generation. The ICG in MnO<sub>2</sub>@AI enhances its photothermal properties, leading to the responsive release of NO from GSNO grafted onto ACN, which then reacts with the increased ROS to generate more toxic RNS. Collectively, the approach described herein offers substantial potential for advancing the treatment of malignant tumors.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100532"},"PeriodicalIF":8.2,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akshay Arjun , H.B. Premkumar , Lalitha S. Jairam , S.C. Sharma , H. Nagabhushana , G.P. Darshan
{"title":"Leveraging photosensitive and thermally stable luminescent Ba2ZnWO6:Eu3+, M+ (M+= Na, K , and Li) nanophosphor for targeted non-invasive and stain-free visualization of cracked tooth syndrome","authors":"Akshay Arjun , H.B. Premkumar , Lalitha S. Jairam , S.C. Sharma , H. Nagabhushana , G.P. Darshan","doi":"10.1016/j.mtnano.2024.100531","DOIUrl":"10.1016/j.mtnano.2024.100531","url":null,"abstract":"<div><div>The cracked tooth syndrome poses a significant challenge in dentistry, thereafter untreated cases often lead to severe complications, such as pulpitis or complete tooth fracture, ultimately contributing to tooth loss. However, the conventional diagnostic methods to visualize microcracks in the tooth suffer from severe drawbacks, such as inaccurate cold stimulation, discomfort with probing, impractical staining techniques, and difficulty in distinguishing harmless craze lines from pathological cracks. To address this challenge, for the first time, we are proposing a novel approach by utilizing luminescent Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor for improved imaging and diagnosis of cracked tooth syndrome. Herein, the double perovskite structured Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %), M<sup>+</sup> (M<sup>+</sup> = Na, K, and Li (1 wt %)) nanophosphors were synthesized via the sonochemical route. The photoluminescence emission spectra of the prepared Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (1–11 mol %) nanophosphors displaying distinct peaks at 583, 595, 613, 662, and 720 nm, which ascribed to transitions from state <sup>5</sup>D<sub>0</sub> to <sup>7</sup>F<sub>J</sub> (J = 1–4) state of the Eu<sup>3+</sup> ions, respectively. By adopting a strategic charge compensation mechanism, the enhancement in the luminescence emission intensity of about 1.5-fold was achieved after co-doping K<sup>+</sup> (1 wt %) with Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %) nanophosphor. The photometric studies of the phosphors portray their orange-red emission with excellent quantum efficiency (82.52 %), and color purity (∼ 99 %). The emission intensity was sustained up to 73.71 % at 473 K, indicating excellent thermal stability of the phosphor. The <em>in vitro</em> cytotoxicity assessments of the optimized nanophosphor demonstrated its biocompatibility on normal non-malignant oral fibroblasts. The visualized microcracks in the tooth using optimized Ba<sub>2</sub>ZnWO<sub>6</sub>:Eu<sup>3+</sup> (3 mol %), K<sup>+</sup> (1 wt %) nanophosphor under UV excitation of UV 365 and 395 nm light revealed the orientation of microcracks, crack width, depth of the crack, and microcrack branching without any stain. The aforementioned results demonstrated that the proposed methodology paves the way for a new avenue in dental imaging technology with the potential to revolutionize and improve patient care outcomes.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100531"},"PeriodicalIF":8.2,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2D isoporous materials: From precursor molecular structures to post-processing methods","authors":"Yang Yang , Xianhui Li , Cheng Xiang","doi":"10.1016/j.mtnano.2024.100523","DOIUrl":"10.1016/j.mtnano.2024.100523","url":null,"abstract":"<div><div>The emerging of two-dimensional (2D) isoporous materials forwarded the applications of membrane materials in cutting-edge fields such as refined separation, atom uptake and single-molecule detection. The key to the design of these materials lies in the precise tailoring of the pore structures. This review presents the state-of-the-art advancements of 2D isoporous materials, highlights the construction of isoporous structures in 2D materials through the bottom-up and top-down synthesis strategies, and reviews various fabrication routes. It comprehensively summarizes the impact of interface selection, precursor design and post-processing on pore formation, pore geometry and edge structures. The feasibility of the material scale-up, current challenges and future development prospects are outlined.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100523"},"PeriodicalIF":8.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lingqi Huang, Peipei Li, Chao Feng, Jing Zhang, Liyun Zhao, Jie Sun, Changhui Du, Wenjia Wang, Kuilong Li
{"title":"High performance self-driven broadband photodetector for polarized imaging based on novel ZrS3/ReSe2 van der Waals heterojunction","authors":"Lingqi Huang, Peipei Li, Chao Feng, Jing Zhang, Liyun Zhao, Jie Sun, Changhui Du, Wenjia Wang, Kuilong Li","doi":"10.1016/j.mtnano.2024.100527","DOIUrl":"10.1016/j.mtnano.2024.100527","url":null,"abstract":"<div><div>The distinctive characteristics of anisotropic two-dimensional (2D) materials, including in-plane anisotropy of optical absorption and carrier mobility, render them exceptionally suitable for application in the field of polarization detection and as a novel platform for the polarization imaging. Meanwhile, the consolidation of diverse functionalities within a single photodetector is highly anticipated to meet the demands of some special scenarios. Herein, a novel ZrS<sub>3</sub>/ReSe<sub>2</sub> van der Waals (vdWs) heterostructure device was successfully constructed to realize polarization-sensitive, self-powered, and broadband photodetection and imaging. Owing to the built-in electric field of the type-II band alignment within the heterojunction, the device achieves a self-powered photoresponse ranging from 300 to 980 nm, an ultralow dark currentt ∼1 pA, and a commendable rise/decay time of 0.35/0.28 ms. Additionally, it has been demonstrated that the self-driven photodetector possesses a polarization-sensitivity with a notable anisotropic ratio about 2.02 (1.98) under 490 nm (980 nm) light illumination with zero bias, coupled with an excellent repeatability and stability. Furthermore, we also demonstrate the polarization imaging capabilities of the device in visible and near-infrared spectrum, realizing a contrast-enhanced degree of linear polarization imaging. This work paves a new platform to develop heterojunction photodetectors for high performance polarization-sensitive photodetection and next-generation polarized imaging.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100527"},"PeriodicalIF":8.2,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}