Materials Today Nano最新文献

筛选
英文 中文
High-performance SERS substrate based on gold nanoparticles-decorated micro/nano-hybrid hierarchical structure 基于金纳米颗粒装饰微/纳米杂化分层结构的高性能 SERS 基底
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-10-05 DOI: 10.1016/j.mtnano.2024.100525
Chuhao Yao , Xiaomeng Zhang , Cheng Lu , Yu Liu , Hailiang Li , Changqing Xie
{"title":"High-performance SERS substrate based on gold nanoparticles-decorated micro/nano-hybrid hierarchical structure","authors":"Chuhao Yao ,&nbsp;Xiaomeng Zhang ,&nbsp;Cheng Lu ,&nbsp;Yu Liu ,&nbsp;Hailiang Li ,&nbsp;Changqing Xie","doi":"10.1016/j.mtnano.2024.100525","DOIUrl":"10.1016/j.mtnano.2024.100525","url":null,"abstract":"<div><div>Owing to its excellent localized surface plasmon resonance (LSPR) effect, noble metal nanoparticles (NPs) find extensive application in the preparation of surface-enhanced Raman scattering (SERS) substrates. However, due to process limitations, the practicality and testing effectiveness of SERS substrates still leaves much to be desired. Here, a wafer-scale gold (Au) NPs silicon (Si) micro/nano-hybrid structured substrate is prepared. This is achieved through two-step etching, followed by decorating Au-NPs onto the structure via self-assembly process induced by de-wetting. Finite-difference time-domain (FDTD) simulations reveal that the significant enhancement of local electric field in the voids between Au-NPs and Si is crucial for enhancing SERS. Using Rhodamine 6G (R6G) as the probe molecule, performance of the fabricated SERS substrate is investigated. It demonstrates a minimum detection limit of 10<sup>−11</sup> M, with a calculated enhancement factor of 4.40 × 10<sup>8</sup>, indicating its high sensitivity. The minimum relative standard deviation for the substrate is 5.254 %. After 20 days of placement, the SERS performance show tiny variation. Even after four cycles of cleaning experiments, it still maintains outstanding SERS performance. This demonstrates its excellent stability, uniformity and reusability. Our research provides guidance for the efficient and low-cost fabrication of high-performance SERS substrates.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100525"},"PeriodicalIF":8.2,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optoplasmonic tuneable response by femtosecond laser irradiation of glass with deep-implanted gold nanoparticles 用飞秒激光辐照深植入金纳米粒子的玻璃,实现光电可调响应
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-10-03 DOI: 10.1016/j.mtnano.2024.100526
Irene Solana , María Dolores Ynsa , Fátima Cabello , Fernando Chacon-Sanchez , Jan Siegel , Mario Garcia-Lechuga
{"title":"Optoplasmonic tuneable response by femtosecond laser irradiation of glass with deep-implanted gold nanoparticles","authors":"Irene Solana ,&nbsp;María Dolores Ynsa ,&nbsp;Fátima Cabello ,&nbsp;Fernando Chacon-Sanchez ,&nbsp;Jan Siegel ,&nbsp;Mario Garcia-Lechuga","doi":"10.1016/j.mtnano.2024.100526","DOIUrl":"10.1016/j.mtnano.2024.100526","url":null,"abstract":"<div><div>The manipulation of the optical properties of plasmonic nanocomposites is of high interest for the development of advanced optical devices with tailored unique properties. Achieving these objectives requires a combination of synthesis techniques and post-fabrication strategies. Here, we combine the use of two well-established physical strategies: MeV ion implantation and femtosecond laser processing. Firstly, we synthesize Au-doped soda lime glass nanocomposite through ion beam implantation (Au<sup>2+</sup> at 1.8 MeV) followed by thermal annealing. This synthesis procedure results in a peculiar optical response based on the combination of Au-nanoparticle plasmonic resonance and a Fabry-Perot interference, caused by the deep implantation (centered at 480 nm). Secondly, this dual response is demonstrated to be highly tuneable by non-resonant femtosecond laser irradiation (800-nm wavelength and 130-fs pulse duration). Depending on the laser fluence, three transformation regimes are distinguished: supressing the interferometric response by spallative ablation, inducing vivid blue colors by surface swelling, and producing red-shifted color changes by multi-shot irradiation at low fluences. The proposed method is very versatile, since it is applicable to any dielectric matrix or implanted element. This work paves the way to a new route for the development of scalable and tuneable nanocomposites with several potential applications in optics.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100526"},"PeriodicalIF":8.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnetic field-enhanced two-electron oxygen reduction reaction using CeMnCo nanoparticles supported on different carbonaceous matrices 使用支撑在不同碳质基质上的钴锰合金纳米粒子进行磁场增强型双电子氧还原反应
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-10-01 DOI: 10.1016/j.mtnano.2024.100524
Caio Machado Fernandes , João Paulo C. Moura , Aline B. Trench , Odivaldo C. Alves , Yutao Xing , Marcos R.V. Lanza , Júlio César M. Silva , Mauro C. Santos
{"title":"Magnetic field-enhanced two-electron oxygen reduction reaction using CeMnCo nanoparticles supported on different carbonaceous matrices","authors":"Caio Machado Fernandes ,&nbsp;João Paulo C. Moura ,&nbsp;Aline B. Trench ,&nbsp;Odivaldo C. Alves ,&nbsp;Yutao Xing ,&nbsp;Marcos R.V. Lanza ,&nbsp;Júlio César M. Silva ,&nbsp;Mauro C. Santos","doi":"10.1016/j.mtnano.2024.100524","DOIUrl":"10.1016/j.mtnano.2024.100524","url":null,"abstract":"<div><div>The current study illustrates the successful synthesis of Ce<sub>1.0</sub>Mn<sub>0.9</sub>Co<sub>0.1</sub> nanoparticles, characterized through XRD, EPR, magnetization curves, and TEM/HRTEM/EDX analyses. These nanoparticles were then loaded into the carbon Vulcan XC72 and the carbon Printex L6 matrices in varying amounts (1, 3, 5, and 10 % w/w) via wet impregnation method to fabricate electrocatalysts for the 2-electron ORR. Before experimentation, the material was characterized via XPS and contact angle measurements. The electrochemical results produced significant findings, indicating that the electrocatalysts with the nanostructures modifying both carbon blacks notably augmented currents in rotating ring-disk electrode measurements, signifying enhanced selectivity for H<sub>2</sub>O<sub>2</sub> production. Moreover, our research underscored the significant impact of Magnetic Field-Enhanced Electrochemistry, employing a constant magnetic field strength of 2000 Oe, on 2-electron ORR experiments. Particularly noteworthy were the observed results surpassing the ones without the magnetic field, demonstrating heightened currents and improved selectivity for H<sub>2</sub>O<sub>2</sub> production (more than 90 %) facilitated by CeMnCo nanoparticles. These significant findings in electrocatalytic efficiency have practical implications, suggesting the potential for developing more efficient and selective catalysts for the 2-electron ORR.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100524"},"PeriodicalIF":8.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleation and growth of quasicrystal-related precipitates within the Al-matrix of AlEr(Fe) alloys AlEr(Fe) 合金的铝基体中准晶体相关沉淀的成核与生长
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-29 DOI: 10.1016/j.mtnano.2024.100522
S. Zhan , X.M. Xiang , Y.X. Lai , X.J. Hu , Z.B. He , J.H. Chen
{"title":"Nucleation and growth of quasicrystal-related precipitates within the Al-matrix of AlEr(Fe) alloys","authors":"S. Zhan ,&nbsp;X.M. Xiang ,&nbsp;Y.X. Lai ,&nbsp;X.J. Hu ,&nbsp;Z.B. He ,&nbsp;J.H. Chen","doi":"10.1016/j.mtnano.2024.100522","DOIUrl":"10.1016/j.mtnano.2024.100522","url":null,"abstract":"<div><div>Since the discovery of quasicrystals, their applications to industry have been interesting issues, among which attempts of introducing quasicrystal-related precipitates into the Al-matrix to enhance properties of Al alloys have been made without adequate understandings. Here, we report a formation pathway of quasicrystal-related precipitates in the Al-matrix of an AlEr(Fe) alloy. It is shown that upon thermal aging of the alloy, Al<sub>3</sub>Er precipitates form firstly in the Al-matrix, then quasicrystal-related (AlFe)-precipitates may nucleate heterogeneously within the Al<sub>3</sub>Er precipitates and grow large. As the quasicrystal-related precipitate grows large, the Al<sub>3</sub>Er-precipitate reform as the thin “skin” of the formed composite precipitate, keeping the quasicrystal-related portion well separated from the matrix. Atomic-resolution electron microscopy and spectroscopy reveal that these composite precipitates are the mixtures of the Al<sub>13</sub>Fe<sub>4</sub> quasicrystal approximant structure and/or quasicrystal-related aperiodic structures, as well as their surrounding skin with Al<sub>3</sub>Er-structure. As such, Fe atoms as vexing impurity in Al alloys can be absorbed continuously into such composite precipitates. Our findings provide insights into the feasibility to form quasicrystal-related precipitates in the Al-matrix.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100522"},"PeriodicalIF":8.2,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and validation of an automated and remote free space measurement system for nondestructive testing of fiber composites 设计并验证用于纤维复合材料无损检测的自动化远程自由空间测量系统
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-28 DOI: 10.1016/j.mtnano.2024.100521
Azim Uddin , Diana Estevez , Hua-Xin Peng , Faxiang Qin
{"title":"Design and validation of an automated and remote free space measurement system for nondestructive testing of fiber composites","authors":"Azim Uddin ,&nbsp;Diana Estevez ,&nbsp;Hua-Xin Peng ,&nbsp;Faxiang Qin","doi":"10.1016/j.mtnano.2024.100521","DOIUrl":"10.1016/j.mtnano.2024.100521","url":null,"abstract":"<div><div>Assessing electromagnetic constitutive parameters is crucial to prescribe the macroscopic properties of composites and their prospective applications. Free space methods are widely used for this purpose, due to their nondestructive/noncontact nature and their applicability on composites incorporating large inclusions or over-frequency bands where waveguide measurements are impractical. However, there still exists issues associated with automation, accurate calibration, remote controlling, and multifunctional characterization. Here, we designed and implemented a microwave-integrated laboratory including a test bench for permittivity/permeability and impedance measurements of individual inclusions and a free space setup for transmission/reflection measurements of fiber-based composites. Easy switching between the bench and antenna measurements was enabled by a homemade RF multiplexer. A three-stage calibration was applied: 2-port error correction (12-term model) of the vector network analyzer and the cables connecting it to the multiplexer, de-embedding of the cables connecting the multiplexer to the switches within the antenna pillars, and thru, reflect, and line (TRL) error correction for the antennas and free space. Exploiting robotics for precise antenna movement and TRL calibration enabled adjustment of the antenna distance to the test frame to a maximum of 2.5 m with a 100 μm accuracy. A multifunctional frame for external stimuli application was also designed. Apart from automation, remote control was realized through user-friendly graphical interfaces and remote access software allowing to swiftly respond to challenges faced during the global pandemic. The free space setup effectiveness was then validated by measuring the transmission/reflection of microwire-based composites from 0.5 to 20 GHz under various magnetic fields.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100521"},"PeriodicalIF":8.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight dielectric-magnetic synergistic necklace-shaped Co@NCP/carbon nanofiber composites for enhanced electromagnetic wave absorption 用于增强电磁波吸收的轻质介电-磁协同项链形 Co@NCP/ 碳纳米纤维复合材料
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-28 DOI: 10.1016/j.mtnano.2024.100520
Dan Wu , Di Lan , Shijie Zhang , Qinchuan He , Xiping Zhou , Yiqun Wang
{"title":"Lightweight dielectric-magnetic synergistic necklace-shaped Co@NCP/carbon nanofiber composites for enhanced electromagnetic wave absorption","authors":"Dan Wu ,&nbsp;Di Lan ,&nbsp;Shijie Zhang ,&nbsp;Qinchuan He ,&nbsp;Xiping Zhou ,&nbsp;Yiqun Wang","doi":"10.1016/j.mtnano.2024.100520","DOIUrl":"10.1016/j.mtnano.2024.100520","url":null,"abstract":"<div><div>In order to solve the problem of impedance mismatch of carbon fiber absorbing materials, it is crucial to create a carbon-based absorbing material with a special structure, synergistic magnetic and dielectric properties. In this paper, necklace-shaped Co@N-doped carbon polyhedron/carbon nanofiber (Co@NCP/CNF) composites with synergistic magnetic and dielectric properties are successfully fabricated by electrospinning. Compared with Co@NCP and CNF, the optimal minimum reflection loss of Co@NCP/CNF composite is −66.14 dB at 2.89 mm and the maximum effective absorption bandwidth is 6.24 GHz (11.76–18.00 GHz) at 2.25 mm at a low filler load of 10 wt%. The necklace-like structure, the coupling effect of dielectric and magnetic materials and the heterogeneous interface form multiple polarizations, conductive losses and multiple loss mechanisms to optimize impedance matching and attenuation performance, which is conducive to excellent absorption performance. More importantly, the radar cross section (RCS) reduction is as high as 24.02 dB m<sup>2</sup>, which has proven to have a good absorption effect in actual application environments. This work combines the advantages of Co@NCP and CNF very well, which provides guidance for designing EM waves nanocomposite fiber absorbers with lightweight and strong absorbing properties.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100520"},"PeriodicalIF":8.2,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration 用于骨组织再生的三维打印可注射纳米复合低温凝胶支架
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-26 DOI: 10.1016/j.mtnano.2024.100519
Edgar J. Castanheira , João R. Maia , Luís P.G. Monteiro , Rita Sobreiro-Almeida , Nina K. Wittig , Henrik Birkedal , João M.M. Rodrigues , João F. Mano
{"title":"3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration","authors":"Edgar J. Castanheira ,&nbsp;João R. Maia ,&nbsp;Luís P.G. Monteiro ,&nbsp;Rita Sobreiro-Almeida ,&nbsp;Nina K. Wittig ,&nbsp;Henrik Birkedal ,&nbsp;João M.M. Rodrigues ,&nbsp;João F. Mano","doi":"10.1016/j.mtnano.2024.100519","DOIUrl":"10.1016/j.mtnano.2024.100519","url":null,"abstract":"<div><div>Cryogels are known for their high water content and interconnected macroporosity, two relevant features in tissue engineering approaches. The cryogel structure can support tissue growth as it allows nutrient and oxygen diffusion, removal of waste products, as well as an enhancement of cell infiltration and proliferation. Bioactive glass nanoparticles are biocompatible and clinically approved bioactive materials widely used as implants in the human body to repair or replace diseased or damaged bones. They are known to facilitate bone binding while stimulating bone growth. Indeed, the combination of cryogels with bioactive nanoparticles has already demonstrated promising results for bone regeneration. Although the developed biomaterials succeed in bone regeneration, they lack suitability for minimal invasive procedures or patient-specificity. Here, we demonstrate a freeform 3D printed nanocomposite cryogel, resorting to an ink composed of functionalized gelatin and bioactive glass nanoparticles with methacrylate groups. Complex structures with multiple layers were 3D printed in a xanthan gum supporting bath. The developed 3D printed nanocomposite cryogels demonstrate the ability to recover their shape without any permanent damage, withstanding up to 65 % compression upon injection. Additionally, they stimulate the differentiation of human adipose-derived stem cells into the osteoblast lineage, therefore promoting bone tissue growth. We further demonstrated their suitability for minimal invasive therapeutics by filling a reproduction of a maxillofacial defect. The developed 3D-printed nanocomposite cryogels offer robust shape-recovery properties, easy injectability, tailored geometry into patient-specific injuries, and high osteogenic bioactivity, showcasing its versatility for bone regeneration purposes.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100519"},"PeriodicalIF":8.2,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142416805","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silane functionalization of graphene nanoplatelets 石墨烯纳米片的硅烷功能化
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-23 DOI: 10.1016/j.mtnano.2024.100518
Myles T. Blurton , Marc Walker , Fengzai Tang , Paul Ladislaus , Thomas Raine , Volkan Degirmenci , Tony McNally
{"title":"Silane functionalization of graphene nanoplatelets","authors":"Myles T. Blurton ,&nbsp;Marc Walker ,&nbsp;Fengzai Tang ,&nbsp;Paul Ladislaus ,&nbsp;Thomas Raine ,&nbsp;Volkan Degirmenci ,&nbsp;Tony McNally","doi":"10.1016/j.mtnano.2024.100518","DOIUrl":"10.1016/j.mtnano.2024.100518","url":null,"abstract":"<div><div>The lack of a facile route for the functionalization of highly sp<sup>2</sup> hybridized, low oxygen content (&lt;10 atm%, C:O &gt; 9:1) graphene nanoplatelets (GNP) has greatly hindered full exploitation of these materials. Moreover, the highly conductive and paramagnetic properties of GNP can exclude the use of solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and electron paramagnetic resonance spectroscopy (EPR), even at liquid helium temperatures, to prove binding of silane to the GNP surface is successful. Here, three model silanes, 3-Mercaptopropyltrimethoxysilane, 3-Methacryloxypropyltrimethoxysilane and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane were successfully bound to the surface of GNP, each following either a condensation silanization reaction or a pathway dependent on the R-group of each silane. Several techniques were employed, but critically a combination of X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis-mass spectrometry (TGA-MS) in argon and air confirmed successful binding of the silane to the GNP. The approach adopted makes available the pendant R-group on the silane for interaction or reaction with polymers and a route to significantly modifying the properties of polymers and surfaces.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100518"},"PeriodicalIF":8.2,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142322697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ambient drying to fabricate polybenzoxazine aerogels for thermal insulation in aerospace 通过常温干燥制造航空航天隔热用聚苯并恶嗪气凝胶
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-14 DOI: 10.1016/j.mtnano.2024.100517
Yanrong Liao , Sizhao Zhang , Zhouyuan Yang , Jing Wang , Shuai Yu , Haolin Zhang , Yunyun Xiao , Feng Ding
{"title":"Ambient drying to fabricate polybenzoxazine aerogels for thermal insulation in aerospace","authors":"Yanrong Liao ,&nbsp;Sizhao Zhang ,&nbsp;Zhouyuan Yang ,&nbsp;Jing Wang ,&nbsp;Shuai Yu ,&nbsp;Haolin Zhang ,&nbsp;Yunyun Xiao ,&nbsp;Feng Ding","doi":"10.1016/j.mtnano.2024.100517","DOIUrl":"10.1016/j.mtnano.2024.100517","url":null,"abstract":"<div><p>Polybenzoxazine (PBz) aerogels are promising high-performance, halogen-free flame-retardant thermal insulation materials in aerospace applications. But their widespread use is hindered by high costs, significant drying shrinkage, and poor machinability. Herein, we successfully addressed these challenges by developing PBz aerogel composites using a cost-effective ambient pressure drying method that reduces energy consumption and shortening the preparation cycle. This approach expands the range of available monomers, reduces the inherent rigidity of the network structure, and enhances processability. The resulting PBz aerogels demonstrate low drying shrinkage (as low as 5.68 %), lightweight properties (lowest to 0.322 g cm<sup>−3</sup>), excellent fire-retardant (self-extinguishing in 1.8 s), and exceptional thermal insulation performance (as low as 0.0402 W m<sup>−1</sup> K<sup>−1</sup> at room temperature and normal pressure). Further studies under various pressures show that at an atmospheric pressure of 10 Pa, the thermal conductivity at room temperature can reach as low as 0.027 W m<sup>−1</sup> K<sup>−1</sup>. Moreover, cryogenic treatment at −196 °C significantly enhances the compressive properties of PBz aerogels without inducing any noticeable shrinkage. Notably, PBz aerogels exhibit outstanding flame resistance, rated as nonflammable rating in vertical burning tests (UL-94, V-1 class), and showing a limiting oxygen index (LOI) as high as 33.7 %. Overall, these remarkable features underscore the exceptional potential of PBz aerogels as advanced thermal insulation materials in the aerospace industry.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100517"},"PeriodicalIF":8.2,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142271238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of vanadium diphosphide with 2D cobalt phosphide architected as an extensible redox active positrode for alkaline supercapacitor 将二磷化钒与二维磷化钴整合在一起,构建成碱性超级电容器的可扩展氧化还原活性正极
IF 8.2 2区 材料科学
Materials Today Nano Pub Date : 2024-09-05 DOI: 10.1016/j.mtnano.2024.100516
Manikandan Ramu , Justin Raj C , Jung Hyun , Nagaraju Goli , Antonysamy Dennyson Savariraj , Periyasamy Sivakumar , Rajavel Velayutham , Byung Chul Kim , Jae-Min Oh
{"title":"Integration of vanadium diphosphide with 2D cobalt phosphide architected as an extensible redox active positrode for alkaline supercapacitor","authors":"Manikandan Ramu ,&nbsp;Justin Raj C ,&nbsp;Jung Hyun ,&nbsp;Nagaraju Goli ,&nbsp;Antonysamy Dennyson Savariraj ,&nbsp;Periyasamy Sivakumar ,&nbsp;Rajavel Velayutham ,&nbsp;Byung Chul Kim ,&nbsp;Jae-Min Oh","doi":"10.1016/j.mtnano.2024.100516","DOIUrl":"10.1016/j.mtnano.2024.100516","url":null,"abstract":"<div><p>Metal phosphides in the form of rationally constructed two-dimensional (2D) nanosheets hold significant promise as versatile materials for energy storage applications. This study introduces a novel hybrid supercapacitor electrode, composed of a binder-free vanadium phosphide integrated cobalt phosphide (VP@CP) on a nickel foam substrate. The fabrication process involves the hydrothermal growth of Co<sub>2</sub>(OH)<sub>2</sub>BDC (BDC- 1,4-benzenedicarboxylate) nanosheets on a Ni-foam substrate (CMF-Ni), followed by the deposition of VO<sub>2</sub> on CMF nanosheets (VO@CMF-Ni) using chronoamperometry and phosphorization of the VO@CMF-Ni to yield VP@CP-Ni nanosheets. Particularly, the density functional theory (DFT) results show that the VP<sub>2</sub> integrated Co<sub>2</sub>P sample provides metallic behavior and low adsorption energy of OH<sup>−</sup> ions, resulting in improved electrochemical redox process. These bimetallic phosphides exhibit outstanding properties, including enhanced pathways for rapid ion transport and storage, increased electronic conductivity, and expanded electroactive regions facilitating the faradaic charge storage process. Due to the presence of vanadium and cobalt coupled sites, the fabricated VP@CP-Ni electrode was able to attain a maximum areal capacity (C<sub>AR</sub>) of 971 mA h cm<sup>−2</sup> at 6 mA cm<sup>−2</sup>. Additionally, the fabricated hybrid device (HDC) exhibits an impressive specific energy (S<sub>E</sub>) of 30.9 Wh kg<sup>−1</sup> at a specific power (S<sub>P</sub>) of 1344 W kg<sup>−1</sup>, and excellent cyclic durability. These remarkable results stimulate the exploration of such possible 2D VP@CP-Ni nanosheets with promising charge storage electrode capabilities to develop a future era of energy storage devices.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"28 ","pages":"Article 100516"},"PeriodicalIF":8.2,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142150186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信