{"title":"[<sup>113m</sup>In]In-RM2: a high potential agent for SPECT imaging of GRPR-expressing tumors.","authors":"Saeid Ranjbar, Seyed Mahmoud Reza Aghamiri, Saeed Rajabifar, Samaneh Zolghadri, Hassan Yousefnia","doi":"10.1007/s13246-024-01510-0","DOIUrl":"10.1007/s13246-024-01510-0","url":null,"abstract":"<p><p>Gastrin-releasing peptide receptors (GRPRs) overexpressed in many cancers are known as promising biomarkers to target tumors such as prostate, breast, and lung cancers. As the early diagnosis of the cancers can serve for better treatment of the patients, [<sup>113m</sup>In]In-DOTA-Pip-D-Phe-Gln-Trp-Ala-Val-Gly-His-Sta-Leu-NH2 ([<sup>113m</sup>In]In-RM2) was prepared using an in-house developed <sup>113</sup>Sn/<sup>113m</sup>In generator. 0.05 M HCl was chosen as the best solution for the generator elution, and 3rd-6th fractions of the generator with the highest activity concentration were used. The chemical, radiochemical, and radionuclide purities of the eluted [<sup>113m</sup>In]InCl<sub>3</sub> were studied using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), radio thin layer chromatography (RTLC), and gamma spectrometry methods, respectively. The radiolabeled peptide was prepared in optimal conditions and the radiochemical purity (RCP) was investigated by RTLC and high-performance liquid chromatography (HPLC) methods. After stability and lipophilicity assessments, the biodistribution of the final complex was checked in normal animals by imaging and scarification. [<sup>113m</sup>In]In-RM2 was prepared with RCP > 99% (RTLC and HPLC), and specific activity of 43.2 TBq/mmol at optimal labeling conditions. The complex was stable in human serum and PBS buffer for at least 3 h (RCP > 96%). The partition coefficient showed the hydrophilic nature of the complex which results in the fast blood clearance via urinary tract. The biodistribution studies was demonstrated high accumulation of [<sup>113m</sup>In]In-RM2 in GRPR-expressing tissues. The results showed [<sup>113m</sup>In]In-RM2 can be considered a high-potential agent for SPECT imaging of GRPR-expressing cancers.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"273-283"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142933185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammadreza Mostafavi, Seok-Bum Ko, Shahriar Baradaran Shokouhi, Ahmad Ayatollahi
{"title":"Correction to: Transfer learning and self-distillation for automated detection of schizophrenia using single-channel EEG and scalogram images.","authors":"Mohammadreza Mostafavi, Seok-Bum Ko, Shahriar Baradaran Shokouhi, Ahmad Ayatollahi","doi":"10.1007/s13246-024-01501-1","DOIUrl":"10.1007/s13246-024-01501-1","url":null,"abstract":"","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"19-20"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143190961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Frontal EEG correlation based human emotion identification and classification.","authors":"S V Thiruselvam, M Ramasubba Reddy","doi":"10.1007/s13246-024-01495-w","DOIUrl":"10.1007/s13246-024-01495-w","url":null,"abstract":"<p><p>Humans express their feelings and intentions of their actions or communication through emotions. Recent advancements in technology involve machines in human communication in day-to-day life. Thus, understanding of human emotions by machines will be very helpful in assisting the user in a far better way. Various physiological and non-physiological signals can be used to make the machines to recognize the emotion of a person. The identification of emotional content in the signals is crucial to understand emotion and the machines act with emotional intelligence at appropriate times, thus providing a better human machine interaction with emotion identification system and mental health monitoring for psychiatric patients. This work includes the creation of an emotion EEG dataset, the development of an algorithm for identifying the emotion elicitation segments in the EEG signal, and the classification of emotions from EEG signals. The EEG signals are divided into 3s segments, and the segments with emotional content are selected based on the decrease in correlation between the frontal electrodes. The selected segments are validated with the facial expressions of the subjects in the appropriate time segments of the face video. EEGNet is used to classify the emotion from the EEG signal. The classification accuracy with the selected emotional EEG segments is higher compared to the accuracy using all the EEG segments. In subject-specific classification, an average accuracy of 80.87% is obtained from the network trained with selected EEG segments, and 70.5% is obtained from training with all EEG segments. In subject-independent classification, the accuracy of classification is 67% and 63.8% with and without segment selection, respectively. The proposed method of selection of EEG segments is validated using the DEAP dataset, and classification accuracies and F1-scores of subject dependent and subject-independent methods are presented.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"121-132"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Seyide Tugce Gokdeniz, Arda Buyuksungur, Mehmet Eray Kolsuz
{"title":"Production of heterogenous bone radiopacity phantom using 3D printing.","authors":"Seyide Tugce Gokdeniz, Arda Buyuksungur, Mehmet Eray Kolsuz","doi":"10.1007/s13246-024-01500-2","DOIUrl":"10.1007/s13246-024-01500-2","url":null,"abstract":"<p><p>The aim is to obtain a heterogenous bone radiopacity phantom with adjustable radiopacity in different regions. The heterogenous 3D printed phantom can be used as bone equivalent in medical education, surgical planning, diagnostic radiology, and radiotherapy. This study utilized a hybrid approach, combining both direct and indirect methods, to create phantoms with realistic bone-equivalent radiodensity. Hollow, cube-shaped test blocks were produced using an SLA 3D printer with a photoreactive resin. The attenuation coefficients of the test blocks were evaluated using Dataviewer software by comparing materials such as calcium sulfate dihydrate, barium sulfate, and hydroxyapatite. The photoreactive resin was modified with hydroxyapatite to increase its radiodensity. A hollow jaw phantom model was then designed and printed using the hydroxyapatite-doped resin. The powder hydroxyapatite was added to the cavities of the printed phantom model. The average attenuation coefficient of barium sulfate was 208 ± 1.90 mm<sup>- 1</sup>, calcium sulfate dihydrate was 187 ± 1.98 mm<sup>- 1</sup>, hydroxyapatite was 128 ± 2.35 mm<sup>- 1</sup>, and bone values, which were considered as reference values in the research, was 125 ± 14 mm<sup>- 1</sup>. The observed difference between the hydroxyapatite added bone model and real bone was not statistically significant (Z:-0.175, p:0.860). The produced mandibular bone phantom has realistic attenuation coefficient values and heterogeneity in terms of radiological features. This study shows that the use of two different methods, which include hydroxyapatite material added into the photoreactive resin during the 3D printing process and the addition of hydroxyapatite as a powder to the gaps in the bone model obtained after printing, yields successful results in the production of bone-equivalent phantoms.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"155-166"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142802637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Estimation of dose to a bystander from F-18 FDG patients using Monte Carlo simulation in clinical exposure scenarios.","authors":"K W N S Samaranayake, Erin Mckay, Thomas Hennessy","doi":"10.1007/s13246-025-01518-0","DOIUrl":"10.1007/s13246-025-01518-0","url":null,"abstract":"<p><p>The radiation exposure to bystanders from nuclear medicine patients is a common concern raised in nuclear medicine departments. The GATE (Geant4 Application for Tomographic Emission) Monte Carlo radiation transport application was used to estimate the dose to a bystander. Two voxelised phantoms were utilised in a GATE Monte Carlo simulation as the radiation source and target. The absorbed dose to the target phantom from radiation emitted by the source phantom was calculated. Three experimental setups of increasing complexity, with the last one replicating clinical dose rate measurements, were used to validate the simulation results. Four clinical scenarios were simulated to estimate the dose to a healthcare worker from F-18 FDG patients: an ultrasound procedure, two surgical procedures (head and chest), and a face-to-face consultation. The mean absorbed dose to the foetus was also estimated using the same method and pregnant female phantoms as target for ultrasound scan scenario. The effective dose to a healthcare worker from an FDG PET patient who has had 250 MBq of FDG injection 3 h post procedures was estimated as: 18.1 ± 0.1 µSv for 30-minute ultrasound scan, 36.5 ± 0.3 µSv for 1-hour chest surgical procedure, and 9.3 ± 0.1 µSv for 15-minute face to face consultation scenario. This method can be easily extended to estimate the dose to bystanders from nuclear medicine patients injected with various radioisotopes in different clinical scenarios.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"359-367"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143068840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unsupervised generative model for simulating post-operative double eyelid image.","authors":"Renzhong Wu, Shenghui Liao, Peishan Dai, Fuchang Han, Xiaoyan Kui, Xuefei Song","doi":"10.1007/s13246-024-01488-9","DOIUrl":"10.1007/s13246-024-01488-9","url":null,"abstract":"<p><p>Simulating the outcome of double eyelid surgery is a challenging task. Many existing approaches rely on complex and time-consuming 3D digital models to reconstruct facial features for simulating facial plastic surgery outcomes. Some recent research performed a simple affine transformation approach based on 2D images to simulate double eyelid surgery outcomes. However, these methods have faced challenges, such as generating unnatural simulation outcomes and requiring manual removal of masks from images. To address these issues, we have pioneered the use of an unsupervised generative model to generate post-operative double eyelid images. Firstly, we created a dataset involving pre- and post-operative 2D images of double eyelid surgery. Secondly, we proposed a novel attention-class activation map module, which was embedded in a generative adversarial model to facilitate translating a single eyelid image to a double eyelid image. This innovative module enables the generator to selectively focus on the eyelid region that differentiates between the source and target domain, while enhancing the discriminator's ability to discern differences between real and generated images. Finally, we have adjusted the adversarial consistency loss to guide the generator in preserving essential features from the source image and eliminating any masks when generating the double eyelid image. Experimental results have demonstrated the superiority of our approach over existing state-of-the-art techniques.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"49-58"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142478061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Autoencoder based data clustering for identifying anomalous repetitive hand movements, and behavioral transition patterns in children.","authors":"Nushara Wedasingha, Pradeepa Samarasinghe, Lasantha Senevirathna, Michela Papandrea, Alessandro Puiatti","doi":"10.1007/s13246-024-01507-9","DOIUrl":"10.1007/s13246-024-01507-9","url":null,"abstract":"<p><p>The analysis of repetitive hand movements and behavioral transition patterns holds particular significance in detecting atypical behaviors in early child development. Early recognition of these behaviors holds immense promise for timely interventions, which can profoundly impact a child's well-being and future prospects. However, the scarcity of specialized medical professionals and limited facilities has made detecting these behaviors and unique patterns challenging using traditional manual methods. This highlights the necessity for automated tools to identify anomalous repetitive hand movements and behavioral transition patterns in children. Our study aimed to develop an automated model for the early identification of anomalous repetitive hand movements and the detection of unique behavioral patterns. Utilizing autoencoders, self-similarity matrices, and unsupervised clustering algorithms, we analyzed skeleton and image-based features, repetition count, and frequency of repetitive child hand movements. This approach aimed to distinguish between typical and atypical repetitive hand movements of varying speeds, addressing data limitations through dimension reduction. Additionally, we aimed to categorize behaviors into clusters beyond binary classification. Through experimentation on three datasets (Hand Movements in Wild, Updated Self-Stimulatory Behaviours, Autism Spectrum Disorder), our model effectively differentiated between typical and atypical hand movements, providing insights into behavioral transitional patterns. This aids the medical community in understanding the evolving behaviors in children. In conclusion, our research addresses the need for early detection of atypical behaviors through an automated model capable of discerning repetitive hand movement patterns. This innovation contributes to early intervention strategies for neurological conditions.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"221-238"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143014385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A novel approach in MRI signal processing for unveiling the intricacies of brain axonal organization.","authors":"Ashishi Puri, Sanjeev Kumar","doi":"10.1007/s13246-024-01504-y","DOIUrl":"10.1007/s13246-024-01504-y","url":null,"abstract":"<p><p>This article introduces an innovative methodology to unveil the intricacies of white matter fiber pathways in the brain using diffusion MRI. Relying on the rationale that traditional methods observe a significant decrease in signal intensity values in the direction of higher diffusivity, our novel approach strategically selects for diffusion-sensitizing gradient directions (dSGDs, representing the directions along which signals are generated) aligned with reduced signal intensities. By treating these selected directions as maximum diffusivity directions, we generate uniformly distributed gradient directions (GDs) around them, which are subsequently employed in the reconstruction process. This approach addresses the shortcomings of existing methods. It improves upon the uniform gradient directions (UGDs) approach, which suffers from gradient direction redundancy, and the adaptive gradient directions (AGDs) approach, which requires solving the linear system twice per voxel. Proposed method simultaneously addresses both limitations, offering a more efficient and streamlined process. The effectiveness of our proposed methodology is rigorously evaluated through simulations and experiments involving real data, showcasing its superior performance in uncovering the complex white matter fiber pathways in the brain.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"181-193"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142878264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The next chapter.","authors":"Clive Baldock","doi":"10.1007/s13246-025-01536-y","DOIUrl":"10.1007/s13246-025-01536-y","url":null,"abstract":"","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143755172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Song Yue, Sana Tabbassum, Elizabeth Helen Jaye, Cheryl A M Anderson, Linda H Nie
{"title":"Sensitivity improvement of a deuterium-deuterium neutron generator based in vivo neutron activation analysis (IVNAA) system.","authors":"Song Yue, Sana Tabbassum, Elizabeth Helen Jaye, Cheryl A M Anderson, Linda H Nie","doi":"10.1007/s13246-024-01487-w","DOIUrl":"10.1007/s13246-024-01487-w","url":null,"abstract":"<p><p>Our lab has been developing a deuterium-deuterium (DD) neutron generator-based neutron activation analysis (NAA) system to quantify metals and elements in the human body in vivo. The system has been used to quantify metals such as manganese, aluminum, sodium in bones of a living human. The technology provides a useful way to assess metal exposure and to estimate elemental deposition, storage and biokinetics. It has great potential to be applied in the occupational and environmental health fields to study the association of metal exposure and various health outcomes, as well as in the nutrition field to study the intake of essential elements and human health. However, the relatively low sensitivity of the system has greatly limited its applications. Neutron moderation plays an important role in designing an IVNAA facility, as it affects thermal neutron flux in irradiation cave and radiation exposure to the human subject. This study aims to develop a novel thermal neutron enhancement method to improve the sensitivity of the in vivo neutron activation analysis (IVNAA) system for elemental measurement but still maintain radiation dose. Utilizing a compact DD neutron source, we propose a new and practical moderator design that combines high density polyethylene with heavy water to enhance thermal neutrons by reducing thermal neutron absorption. All material dimensions are calculated by PHITS, a general-purpose Monte Carlo simulation program. The improvement of the new design predicted by the Monte Carlo simulation for the quantification of one of the elements, manganese was verified by experimental irradiation of manganese-doped bone equivalent phantoms. For the same radiation dose, a 67.9% thermal neutron flux enhancement is reached. With only 4.2% increase of radiation dose, the simulated thermal neutron flux and activation can be further increased by 84.2%. A 100% thermal neutron enhancement ratio is also achievable with a 20% dose increase. The experimental results clearly show higher manganese activation gamma ray counts for each specific phantom, with a significantly reduced minimum detection limit. Additionally, the photon dose was suppressed. The thermal neutron enhancement method can increase the number of useful neutrons significantly but maintain the radiation dose. This greatly decreased the detection limit of the system for elemental quantification at an acceptable dose, which will broadly expand the application of the technology in research and clinical use. The method can also be applied to other neutron medical applications, including neutron imaging and radiotherapy.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"35-46"},"PeriodicalIF":2.4,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11996596/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}