Physical and Engineering Sciences in Medicine最新文献

筛选
英文 中文
Optimization of sub-arc collimator angles in volumetric modulated arc therapy: a heatmap-based blocking index approach for multiple brain metastases. 体积调制弧治疗中弧下准直器角度的优化:基于热图的多发性脑转移瘤阻滞指数方法。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-09-05 DOI: 10.1007/s13246-024-01477-y
Shi-Xiong Huang, Song-Hua Yang, Biao Zeng, Xiao-Hua Li
{"title":"Optimization of sub-arc collimator angles in volumetric modulated arc therapy: a heatmap-based blocking index approach for multiple brain metastases.","authors":"Shi-Xiong Huang, Song-Hua Yang, Biao Zeng, Xiao-Hua Li","doi":"10.1007/s13246-024-01477-y","DOIUrl":"10.1007/s13246-024-01477-y","url":null,"abstract":"<p><p>To develop and assess an automated Sub-arc Collimator Angle Optimization (SACAO) algorithm and Cumulative Blocking Index Ratio (CBIR) metrics for single-isocenter coplanar volumetric modulated arc therapy (VMAT) to treat multiple brain metastases. This study included 31 patients with multiple brain metastases, each having 2 to 8 targets. Initially, for each control point, the MLC blocking index was calculated at different collimator angles, resulting in a two-dimensional heatmap. Optimal sub-arc segmentation and collimator angle optimization were achieved using an interval dynamic programming algorithm. Subsequently, VMAT plans were designed using two approaches: SACAO and the conventional Full-Arc Fixed Collimator Angle. CBIR was calculated as the ratio of the cumulative blocking index between the two plan approaches. Finally, dosimetric and planning parameters of both plans were compared. Normal brain tissue, brainstem, and eyes received better protection in the SACAO group (P < 0.05).Query Notable reductions in the SACAO group included 11.47% in gradient index (GI), 15.03% in monitor units (MU), 15.73% in mean control point Jaw area (A<sub>Jaw,mean</sub>), and 19.14% in mean control point Jaw-X width (W<sub>Jaw-X,mean</sub>), all statistically significant (P < 0.001). Furthermore, CBIR showed a strong negative correlation with the degree of plan improvement. The SACAO method enhanced protection of normal organs while improving transmission efficiency and optimization performance of VMAT. In particular, the CBIR metrics show promise in quantifying the differences specifically in the 'island blocking problem' between SACAO and conventional VMAT, and in guiding the enhanced application of the SACAO algorithm.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1639-1650"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite element simulation of treatment with locking plate for distal fibula fractures. 用锁定钢板治疗腓骨远端骨折的有限元模拟。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-07-15 DOI: 10.1007/s13246-024-01456-3
Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang
{"title":"Finite element simulation of treatment with locking plate for distal fibula fractures.","authors":"Yafeng Li, Zichun Zou, Peng Yi, Chen Xu, Zhifeng Tian, Xi Zhang, Jing Zhang","doi":"10.1007/s13246-024-01456-3","DOIUrl":"10.1007/s13246-024-01456-3","url":null,"abstract":"<p><p>An improved Finite Element Model(FEM) is applied to compare the biomechanical stability of plates with three different options in the treatment of distal fibula fractures in this study. The Computed Tomography(CT) scan of the knee to ankle segment of a volunteer was performed. A 3D fibula FEM was reconstructed based on the CT data. Three different loads (uni-pedal standing, torsion, and twisting) were applied, the same as in the experiments in the literature. The stresses and strains of the three options were compared under the same loads, using a 4-hole locking plate (Option A), a 5-hole locking plate (Option B), and a 6-hole locking plate (Option C) in a standard plate for lateral internal fixation. The simulation results show that all three options showed a stress masking effect. Option C had the best overall biomechanical performance and could effectively distribute the transferred weight. This is because option C has greater torsional stiffness and better biomechanical stability than options A and B, and therefore, option C is the recommended internal fixation method for distal fibula fractures. The Finite Element Analysis(FEA) method developed in this work applies to the stress analysis of fracture treatment options in other body parts.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1461-1468"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The accuracy of Eclipse AXB and AAA dose algorithms with dental amalgam. Eclipse AXB 和 AAA 剂量算法对牙科汞合金的准确性。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-08-14 DOI: 10.1007/s13246-024-01471-4
Sam Potter, Carine Maxwell, James Rijken
{"title":"The accuracy of Eclipse AXB and AAA dose algorithms with dental amalgam.","authors":"Sam Potter, Carine Maxwell, James Rijken","doi":"10.1007/s13246-024-01471-4","DOIUrl":"10.1007/s13246-024-01471-4","url":null,"abstract":"<p><p>High-density materials used for dental restorations are poorly defined in CT imaging due to scanner limitations. Studies have established that Eclipse offers poor agreement with delivered dose in situations involving high-density material. Defining the accuracy of dose algorithms in situations involving high-density overrides would improve clinical outcomes both for target coverage and OAR sparing. Dental amalgam was placed within a solid water phantom and measurements were taken at 1 cm increments beneath the amalgam down to a depth of 6 cm. Exposed film was compared with Eclipse Treatment Planning system (TPS) calculations on a CT of the experimental setup. The amalgam was overridden with a range of HU values and material selections for dose calculation. AXB performs poorly at describing depth dose downstream of Amalgam, regardless of the override material selected. Applying the known mass density with the Anisotropic Analytical Algorithm (AAA) predicts an average of 1.8% and 2.8% for 6 MV and 10 MV beams. The closest agreement achieved using the Acuros XB (AXB) was overriding with stainless steel, which predicted approximately 1.1% and 1.8% above measured dose for 6 MV and 10 MV respectively. Without overriding the density of amalgam, AAA and AXB return depth dose predictions of 7.3% and 5.8% above film measurement for a 6 MV and 7.6% and 6.5% for 10 MV static beams. Applying override options to a clinical case using an anthropomorphic phantom showed using AXB with Stainless Steel as amalgam override returns the same results as AAA with mass density applied for amalgam. Both of these were in close agreement to the TPS.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1571-1580"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141976941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization of spatial dose distribution for effective radiation protection education in interventional radiology: obtaining high-accuracy spatial doses. 将空间剂量分布可视化,以便在介入放射学中开展有效的辐射防护教育:获取高精度空间剂量。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-09-09 DOI: 10.1007/s13246-024-01479-w
Yutaro Mori, Tomonori Isobe, Yasuwo Ide, Shuto Uematsu, Tetsuya Tomita, Yoshiaki Nagai, Takashi Iizumi, Hideyuki Takei, Hideyuki Sakurai, Takeji Sakae
{"title":"Visualization of spatial dose distribution for effective radiation protection education in interventional radiology: obtaining high-accuracy spatial doses.","authors":"Yutaro Mori, Tomonori Isobe, Yasuwo Ide, Shuto Uematsu, Tetsuya Tomita, Yoshiaki Nagai, Takashi Iizumi, Hideyuki Takei, Hideyuki Sakurai, Takeji Sakae","doi":"10.1007/s13246-024-01479-w","DOIUrl":"10.1007/s13246-024-01479-w","url":null,"abstract":"<p><p>In recent years, eye lens exposure among radiation workers has become a serious concern in medical X-ray fluoroscopy and interventional radiology (IVR), highlighting the need for radiation protection education and training. This study presents a method that can maintain high accuracy when calculating spatial dose distributions obtained via Monte Carlo simulation and establishes another method to three-dimensionally visualize radiation using the obtained calculation results for contributing to effective radiation-protection education in X-ray fluoroscopy and IVR. The Monte Carlo particle and heavy ion transport code system (PHITS, Ver. 3.24) was used for calculating the spatial dose distribution generated by an angiography device. We determined the peak X-ray tube voltage and half value layer using Raysafe X2 to define the X-ray spectrum from the source and calculated the X-ray spectrum from the measured results using an approximation formula developed by Tucker et al. Further, we performed measurements using the \"jungle-gym\" method under the same conditions as the Monte Carlo calculations for verifying the accuracy of the latter. An optically stimulated luminescence dosimeter (nanoDot dosimeter) was used as the measuring instrument. In addition, we attempted to visualize radiation using ParaView (version 5.12.0-RC2) using the spatial dose distribution confirmed by the above calculations. A comparison of the measured and Monte Carlo calculated spatial dose distributions revealed that some areas showed large errors (12.3 and 24.2%) between the two values. These errors could be attributed to the scattering and absorption of X-rays caused by the jungle gym method, which led to uncertain measurements, and (2) the angular and energy dependencies of the nanoDot dosimetry. These two causes explain the errors in the actual values, and thus, the Monte Carlo calculations proposed in this study can be considered to have high-quality X-ray spectra and high accuracy. We successfully visualized the three-dimensional spatial dose distribution for direct and scattered X-rays separately using the obtained spatial dose distribution. We established a method to verify the accuracy of Monte Carlo calculations performed through the procedures considered in this study. Various three-dimensional spatial dose distributions were obtained with assured accuracy by applying the Monte Carlo calculation (e.g., changing the irradiation angle and adding a protective plate). Effective radiation-protection education can be realized by combining the present method with highly reliable software to visualize dose distributions.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1665-1676"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666685/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The verification of the utility of a commercially available phantom combination for quality control in contrast-enhanced mammography. 验证商用模型组合在对比增强乳腺 X 射线摄影质量控制中的实用性。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-07-02 DOI: 10.1007/s13246-024-01461-6
J-H Kim, M Kessell, D Taylor, M Hill, J W Burrage
{"title":"The verification of the utility of a commercially available phantom combination for quality control in contrast-enhanced mammography.","authors":"J-H Kim, M Kessell, D Taylor, M Hill, J W Burrage","doi":"10.1007/s13246-024-01461-6","DOIUrl":"10.1007/s13246-024-01461-6","url":null,"abstract":"<p><p>Contrast-enhanced mammography is being increasingly implemented clinically, providing much improved contrast between tumour and background structures, particularly in dense breasts. Although CEM is similar to conventional mammography it differs via an additional exposure with high energy X-rays (≥ 40 kVp) and subsequent image subtraction. Because of its special operational aspects, the CEM aspect of a CEM unit needs to be uniquely characterised and evaluated. This study aims to verify the utility of a commercially available phantom set (BR3D model 020 and CESM model 022 phantoms (CIRS, Norfolk, Virginia, USA)) in performing key CEM performance tests (linearity of system response with iodine concentration and background subtraction) on two models of CEM units in a clinical setting. The tests were successfully performed, yielding results similar to previously published studies. Further, similarities and differences in the two systems from different vendors were highlighted, knowledge of which may potentially facilitate optimisation of the systems.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1491-1499"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141493980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases. 在治疗脑转移瘤的单中心 VMAT 中,基于肿瘤数学模型和微剂量测定动力学模型评估肿瘤体积缩小情况,并考虑设置误差。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-06-17 DOI: 10.1007/s13246-024-01451-8
Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa
{"title":"Assessing tumor volumetric reduction with consideration for setup errors based on mathematical tumor model and microdosimetric kinetic model in single-isocenter VMAT for brain metastases.","authors":"Hisashi Nakano, Takehiro Shiinoki, Satoshi Tanabe, Satoru Utsunomiya, Motoki Kaidu, Teiji Nishio, Hiroyuki Ishikawa","doi":"10.1007/s13246-024-01451-8","DOIUrl":"10.1007/s13246-024-01451-8","url":null,"abstract":"<p><p>The volumetric reduction rate (VRR) was evaluated with consideration for six degrees-of-freedom (6DoF) patient setup errors based on a mathematical tumor model in single-isocenter volumetric modulated arc therapy (SI-VMAT) for brain metastases. Simulated gross tumor volumes (GTV) of 1.0 cm and dose distribution were created (27 Gy/3 fractions). The distance between the GTV center and isocenter (d) was set at 0-10 cm. The GTV was translated within 0-1.0 mm (Trans) and rotated within 0-1.0° (Rot) in the three axis directions using affine transformation. The tumor growth volume was calculated using a multicomponent mathematical model (MCTM), and lethal effects of irradiation and repair from damage during irradiation were calculated by a microdosimetric kinetic model (MKM) for non-small cell lung cancer (NSCLC) A549 and NCI-H460 (H460) cells. The VRRs were calculated 5 days after the end of irradiation using the physical dose to the GTV for varying d and 6DoF setup errors. The tolerance value of VRR, the GTV volume reduction rate, was set at 5%, based on the pre-irradiation GTV volume. With the exception of the only one A549 condition where (Trans, Rot) = (1.0 mm, 1.0°) was repeated for 3 fractions, all conditions met all the tolerance VRR values for A549 and H460 cells with varying d from 0 to 10 cm. Evaluation based on the mathematical tumor model suggested that if the 6DoF setup errors at each irradiation could be kept within 1.0 mm and 1.0°, there would be little effect on tumor volume regardless of the distance from the isocenter in SI-VMAT.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1385-1396"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141332290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and performance evaluation of a novel scintillation-based active shielding gamma probe. 新型闪烁式主动屏蔽伽马探针的开发与性能评估。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-08-12 DOI: 10.1007/s13246-024-01474-1
O B Kolcu, T Yetkin, A T Zengin, E Iren, E C Günay
{"title":"Development and performance evaluation of a novel scintillation-based active shielding gamma probe.","authors":"O B Kolcu, T Yetkin, A T Zengin, E Iren, E C Günay","doi":"10.1007/s13246-024-01474-1","DOIUrl":"10.1007/s13246-024-01474-1","url":null,"abstract":"<p><p>The gamma probe is a commonly used detector for localizing sentinel lymph nodes after the injection of radiopharmaceuticals. In recent years, studies have focused on improving the features of gamma probes to achieve more consistent localization of the radiotracer uptake. As part of this effort, a novel gamma probe prototype based on an active shielding was developed, and its characteristics, including sensitivity, resolution and shielding effectiveness, were determined. The prototype integrates trapezoidal-shaped bismuth germanate (BGO) array coupled with a silicon photomultiplier (SiPM) array, accompanied by dedicated electronics and software for stand alone usage. We conducted a thorough characterization, validating experimental observations through Monte Carlo simulations using the GEANT4 simulation package. In scattering environment, with a probe-source distance of 30 mm, the experimental results show that the detector sensitivity is <math><mrow><mn>120</mn> <mo>±</mo> <mn>5</mn></mrow> </math> cps/MBq, and the spatial and angular resolutions, in terms of full width at half maximum (FWHM), are <math><mrow><mn>44.8</mn> <mo>±</mo> <mn>1.3</mn></mrow> </math> mm and <math><mrow><mn>87.3</mn> <mo>±</mo> <mn>1</mn> <mo>.</mo> <msup><mn>5</mn> <mo>∘</mo></msup> </mrow> </math> , respectively. The shielding effectiveness of the probe was determined to be greater than 95 <math><mo>%</mo></math> . The prototype with active shielding was found to have comparable performance to conventional gamma probes.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1603-1612"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141917884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement of computed tomography modulation transfer function with a novel polymethyl methacrylate phantom. 利用新型聚甲基丙烯酸甲酯模型测量计算机断层扫描调制传递函数。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-09-09 DOI: 10.1007/s13246-024-01468-z
J Svenson, M A Irvine
{"title":"Measurement of computed tomography modulation transfer function with a novel polymethyl methacrylate phantom.","authors":"J Svenson, M A Irvine","doi":"10.1007/s13246-024-01468-z","DOIUrl":"10.1007/s13246-024-01468-z","url":null,"abstract":"<p><p>A novel phantom for measuring the 10% and 50% values of the modulation transfer function (MTF) for computed tomography scanners (CT) was investigated. The phantom was constructed by drilling rows of holes of different sizes and frequencies into a small block of polymethyl methacrylate (PMMA). The MTF at a given frequency was determined from the ratio of the range of Hounsfield units within the rows of holes at different frequencies, and the difference in Hounsfield units between air and PMMA. A MTF curve was plotted from measurements at different frequencies and the 10% and 50% MTF values were obtained from a cubic spline interpolation. The MTF results obtained with the drilled hole phantom method were compared to a conventional method - using a thin wire and Spice-CT ImageJ Plugin- and with identical acquisition and reconstruction parameters. The drilled hole phantom measured the 50% MTF with reasonable accuracy but underestimated the 10% MTF by 8.2% on average. MTF measurements were reproducible for repeated image acquisitions and with different users analysing the images, and the phantom was able to accurately measure the change in MTF when measured on images using different reconstruction kernels. The tool may find application as a cheap, easy to use method for routine QC testing of CT scanners.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1773-1780"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating 4D respiratory cone-beam CT imaging for thoracic interventions on robotic C-arm systems: a deformable phantom study. 机器人 C 臂系统胸部介入的 4D 呼吸锥束 CT 成像研究:可变形模型研究。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-24 DOI: 10.1007/s13246-024-01491-0
Tess Reynolds, Owen Dillon, Yiqun Ma, Nicholas Hindley, J Webster Stayman, Magdalena Bazalova-Carter
{"title":"Investigating 4D respiratory cone-beam CT imaging for thoracic interventions on robotic C-arm systems: a deformable phantom study.","authors":"Tess Reynolds, Owen Dillon, Yiqun Ma, Nicholas Hindley, J Webster Stayman, Magdalena Bazalova-Carter","doi":"10.1007/s13246-024-01491-0","DOIUrl":"10.1007/s13246-024-01491-0","url":null,"abstract":"<p><p>Increasingly, interventional thoracic workflows utilize cone-beam CT (CBCT) to improve navigational and diagnostic yield. Here, we investigate the feasibility of implementing free-breathing 4D respiratory CBCT for motion mitigated imaging in patients unable to perform a breath-hold or without suspending mechanical ventilation during thoracic interventions. Circular 4D respiratory CBCT imaging trajectories were implemented on a clinical robotic CBCT system using additional real-time control hardware. The circular trajectories consisted of 1 × 360° circle at 0° tilt with fixed gantry velocities of 2°/s, 10°/s, and 20°/s. The imaging target was an in-house developed anthropomorphic breathing thorax phantom with deformable lungs and 3D-printed imaging targets. The phantom was programmed to reproduce 3 patient-measured breathing traces. Following image acquisition, projections were retrospectively binned into ten respiratory phases and reconstructed using filtered back projection, model-based, and iterative motion compensated algorithms. A conventional circular acquisition on the system of the free-breathing phantom was used as comparator. Edge Response Width (ERW) of the imaging target boundaries and Contrast-to-Noise Ratio (CNR) were used for image quality quantification. All acquisitions across all traces considered displayed visual evidence of motion blurring, and this was reflected in the quantitative measurements. Additionally, all the 4D respiratory acquisitions displayed a lower contrast compared to the conventional acquisitions for all three traces considered. Overall, the current implementation of 4D respiratory CBCT explored in this study with various gantry velocities combined with motion compensated algorithms improved image sharpness for the slower gantry rotations considered (2°/s and 10°/s) compared to conventional acquisitions over a variety of patient traces.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1751-1762"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11666758/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142510615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of direct point dose estimation based on the distribution of the size-specific dose estimate. 根据特定尺寸剂量估计值的分布,评估直接点剂量估计值。
IF 2.4 4区 医学
Physical and Engineering Sciences in Medicine Pub Date : 2024-12-01 Epub Date: 2024-07-31 DOI: 10.1007/s13246-024-01465-2
Choirul Anam, Heri Sutanto, Riska Amilia, Rini Marini, Sinta Nur Barokah, Noor Diyana Osman, Geoff Dougherty
{"title":"Evaluation of direct point dose estimation based on the distribution of the size-specific dose estimate.","authors":"Choirul Anam, Heri Sutanto, Riska Amilia, Rini Marini, Sinta Nur Barokah, Noor Diyana Osman, Geoff Dougherty","doi":"10.1007/s13246-024-01465-2","DOIUrl":"10.1007/s13246-024-01465-2","url":null,"abstract":"<p><p>The aim of this study was to evaluate the point doses using a distribution of the size-specific dose estimate (SSDE) from axial CT images of in-house phantoms having diameters from 8 to 40 cm. In-house phantoms made of polyester-resin (PESR) mixed with methyl ethyl ketone peroxide (MEKP) were used. The phantoms were built with different diameter sizes of 8, 16, 24, 32, and 40 cm. The phantoms were scanned by Siemens a SOMATOM Perspective-128 slice CT scanner with constant input parameters. The point doses were interpolated from the central SSDE (SSDEc) and the peripheral SSDE (SSDEp). The SSDEc and SSDEp were calculated from the SSDE with h- and k-factors. The point doses were compared to the direct measurements using the nanoDot™ optically-stimulated luminescence dosimeter (OSLD) in dedicated holes on the phantoms. It was found that the point dose decreases as the phantom diameter increased. The doses obtained using two approaches differed by 11% on average. The highest difference was 40% and the lowest difference was < 1%. It was found that dose based on the SSDE concept tended to be higher compared to the measured dose by OSLD. Point dose estimation using the concept of SSDE distribution can be considered an alternative for accurate and simple estimation. This approach still requires improvements to increase its accuracy and its application to estimate the organ dose needs further investigation.</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":"1525-1535"},"PeriodicalIF":2.4,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信