{"title":"DGEAHorNet: high-order spatial interaction network with dual cross global efficient attention for medical image segmentation.","authors":"Haixin Peng, Xinjun An, Xue Chen, Zhenxiang Chen","doi":"10.1007/s13246-025-01583-5","DOIUrl":null,"url":null,"abstract":"<p><p>Medical image segmentation is a complex and challenging task, which aims to accurately segment various structures or abnormal regions in medical images. However, obtaining accurate segmentation results is difficult because of the great uncertainty in the shape, location, and scale of the target region. To address these challenges, we propose a higher-order spatial interaction framework with dual cross global efficient attention (DGEAHorNet), which employs a neural network architecture based on recursive gate convolution to adequately extract multi-scale contextual information from images. Specifically, a Dual Cross-Attentions (DCA) is added to the skip connection that can effectively blend multi-stage encoder features and narrow the semantic gap. In the bottleneck stage, global channel spatial attention module (GCSAM) is used to extract image global information. To obtain better feature representation, we feed the output from the GCSAM into the multi-branch dense layer (SENetV2) for excitation. Furthermore, we adopt Depthwise Over-parameterized Convolutional Layer (DO-Conv) in order to replace the common convolutional layer in the input and output part of our network, then add Efficient Attention (EA) to diminish computational complexity and enhance our model's performance. For evaluating the effectiveness of our proposed DGEAHorNet, we conduct comprehensive experiments on four publicly-available datasets, and achieving 0.9320, 0.9337, 0.9312 and 0.7799 in Dice similarity coefficient on ISIC2018, ISIC2017, CVC-ClinicDB and HRF respectively. Our results show that DGEAHorNet has better performance compared with advanced methods. The code is publicly available at https://github.com/penghaixin/mymodel .</p>","PeriodicalId":48490,"journal":{"name":"Physical and Engineering Sciences in Medicine","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical and Engineering Sciences in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13246-025-01583-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Medical image segmentation is a complex and challenging task, which aims to accurately segment various structures or abnormal regions in medical images. However, obtaining accurate segmentation results is difficult because of the great uncertainty in the shape, location, and scale of the target region. To address these challenges, we propose a higher-order spatial interaction framework with dual cross global efficient attention (DGEAHorNet), which employs a neural network architecture based on recursive gate convolution to adequately extract multi-scale contextual information from images. Specifically, a Dual Cross-Attentions (DCA) is added to the skip connection that can effectively blend multi-stage encoder features and narrow the semantic gap. In the bottleneck stage, global channel spatial attention module (GCSAM) is used to extract image global information. To obtain better feature representation, we feed the output from the GCSAM into the multi-branch dense layer (SENetV2) for excitation. Furthermore, we adopt Depthwise Over-parameterized Convolutional Layer (DO-Conv) in order to replace the common convolutional layer in the input and output part of our network, then add Efficient Attention (EA) to diminish computational complexity and enhance our model's performance. For evaluating the effectiveness of our proposed DGEAHorNet, we conduct comprehensive experiments on four publicly-available datasets, and achieving 0.9320, 0.9337, 0.9312 and 0.7799 in Dice similarity coefficient on ISIC2018, ISIC2017, CVC-ClinicDB and HRF respectively. Our results show that DGEAHorNet has better performance compared with advanced methods. The code is publicly available at https://github.com/penghaixin/mymodel .