Biochemical Genetics最新文献

筛选
英文 中文
Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease. 细胞膜上GABBR2表达增加导致Ca2 +向内流动增加,与早期阿尔茨海默病的认知障碍相关
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-26 DOI: 10.1007/s10528-024-11004-z
Yifei Weng, Guomin Xie
{"title":"Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease.","authors":"Yifei Weng, Guomin Xie","doi":"10.1007/s10528-024-11004-z","DOIUrl":"https://doi.org/10.1007/s10528-024-11004-z","url":null,"abstract":"<p><p>Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685. Further, overexpression of GABBR2 was achieved in human neuroblastoma cell lines SH-SY5Y and BE(2)-M17 using expression plasmid transfection. GABBR2 was significantly overexpressed in brain tissues of patients with prodromal AD who had developed MCI, as compared to normal brains. Moreover, GABBR2 overexpressing cells showed a significant increase in intracellular Ca<sup>2+</sup> concentration, a large amount of reactive oxygen species production, a large opening of the mitochondrial permeability transition pore and a significant increase in apoptosis compared with control cells. GABBR2 overexpression was significantly involved in early AD progression and MCI by causing cellular events such as intracellular Ca<sup>2+</sup> imbalance, oxidative stress, and mitochondrial dysfunction.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142891329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liver Kinase B1 Protects Against Hypoxia-Induced Pulmonary Arterial Endothelial Cell Dysfunction via the AMP-Activated Protein Kinase Pathway. 肝激酶B1通过amp激活的蛋白激酶途径保护缺氧诱导的肺动脉内皮细胞功能障碍。
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-25 DOI: 10.1007/s10528-024-11007-w
Bingchang Hei, Anzhe Zhang, Meiming Yang, Yunfei Jiang, Zhanjiang Guan
{"title":"Liver Kinase B1 Protects Against Hypoxia-Induced Pulmonary Arterial Endothelial Cell Dysfunction via the AMP-Activated Protein Kinase Pathway.","authors":"Bingchang Hei, Anzhe Zhang, Meiming Yang, Yunfei Jiang, Zhanjiang Guan","doi":"10.1007/s10528-024-11007-w","DOIUrl":"https://doi.org/10.1007/s10528-024-11007-w","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a progressive disease characterized by vascular reHypoxiaing, endothelial cell dysfunction, and inflammation. Liver Kinase B1 (LKB1, also known as STK11) is a central regulator of cell polarity and energy homeostasis. However, its specific role and mechanism of action in PH remain unclear. Human pulmonary arterial endothelial cells (hPAECs) were cultured in vitro to establish PH cell Hypoxias under normoxic and hypoxic conditions. The expression of LKB1 was detected by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and western blotting, and its effect on hPAECs function was investigated by overexpression and inhibition of LKB1. Furthermore, cell proliferation was assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, apoptosis was measured by flow cytometry, inflammatory cytokine secretion was evaluated using enzyme-linked immunosorbent assay (ELISA), and the expression of AMP-activated protein kinase (AMPK) signaling pathway-related proteins was analyzed by western blotting. LKB1 expression was significantly reduced in hypoxia-treated hPAECs compared with that in normoxic controls, and LKB1 overexpression significantly ameliorated the hypoxia-induced decrease in cell proliferation and increase in apoptosis as well as inflammatory factor secretion. The AMPK agonist (GSK621) reversed the dysfunction caused by LKB1 inhibition, indicating that LKB1 regulates hPAECs function through the AMPK signaling pathway. LKB1 plays a protective role in PH by inhibiting hPAECs dysfunction via activation of the AMPK pathway.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142885043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of GAS5-miRNA-Mediated Signaling Pathways in Cancer Pathobiology: A Comprehensive Exploration of Pathways Influenced by this Axis. 癌症病理生物学中gas5 - mirna介导的信号通路失调:受该轴影响的通路的综合探索
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-24 DOI: 10.1007/s10528-024-10997-x
Enwa Felix Oghenemaro, Abdulrahman Qais Khaleel, Jasur Alimdjanovich Rizaev, R Roopashree, Muath Suliman, Syeda Wajida Kazmi, Ahmed Hjazi, Pranchal Rajput, Yasser Fakri Mustafa, Munther Kadhim Abosaoda
{"title":"Dysregulation of GAS5-miRNA-Mediated Signaling Pathways in Cancer Pathobiology: A Comprehensive Exploration of Pathways Influenced by this Axis.","authors":"Enwa Felix Oghenemaro, Abdulrahman Qais Khaleel, Jasur Alimdjanovich Rizaev, R Roopashree, Muath Suliman, Syeda Wajida Kazmi, Ahmed Hjazi, Pranchal Rajput, Yasser Fakri Mustafa, Munther Kadhim Abosaoda","doi":"10.1007/s10528-024-10997-x","DOIUrl":"https://doi.org/10.1007/s10528-024-10997-x","url":null,"abstract":"<p><p>The long non-coding RNA Growth Arrest-Specific 5 (GAS5) is pivotal in modulating key signaling pathways by functioning as a molecular sponge for microRNAs (miRNAs). GAS5 is notably recognized for its antitumor properties, primarily through its ability to sequester oncogenic miRNAs, thereby influencing critical pathways such as p53, Wnt/β-catenin, and PI3K/Akt, all of which are integral to cell proliferation, apoptosis, and metastasis. The disruption of GAS5-miRNA interactions has been implicated in various malignancies, reinforcing its potential as both a biomarker and a therapeutic target. This paper delves into the intricate signaling cascades affected by GAS5-miRNA interactions and thoroughly investigates the diagnosis and treatment prospects associated with GAS5. Moreover, it addresses both the challenges and opportunities for translational applicability of these findings in clinical environments. The study emphasizes GAS5's significance within the cancer molecular landscape and posits that precise modulation of GAS5-miRNA interactions could catalyze transformative developments in cancer diagnostics and therapeutic approaches. This comprehensive review not only highlights the critical role of non-coding RNAs in cancer biology but also aims to lay the groundwork for future investigations aimed at harnessing these insights for therapeutic interventions.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
β-Asarone Inhibits Carboplatin Resistance in Retinoblastoma Cells Through the UCA1/miR-206/NRP1 Axis. β-细辛酮通过UCA1/miR-206/NRP1轴抑制视网膜母细胞瘤细胞的卡铂耐药性
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-24 DOI: 10.1007/s10528-024-10985-1
Shuwei Bai, Haiyan Wang, Ye Bai, Peiyang Liu, Chunchao Bi
{"title":"β-Asarone Inhibits Carboplatin Resistance in Retinoblastoma Cells Through the UCA1/miR-206/NRP1 Axis.","authors":"Shuwei Bai, Haiyan Wang, Ye Bai, Peiyang Liu, Chunchao Bi","doi":"10.1007/s10528-024-10985-1","DOIUrl":"https://doi.org/10.1007/s10528-024-10985-1","url":null,"abstract":"<p><p>Retinoblastoma (RB) is an aggressive form of eye cancer. β-Asarone is a bioactive component isolated from the medicinal plant Acorus tatarinowii Schott and has anticancer effects on various human cancers. However, reports regarding the role of β-Asarone in RB remain limited. Our study investigates the mechanisms of β-Asarone in regulating drug resistance in RB, providing a theoretical foundation for RB treatment. A carboplatin-resistant RB cell line was established and treated with β-Asarone, followed by overexpression of long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1). The half-maximal inhibitory concentration and cell apoptosis were determined. The levels of lncRNA UCA1/miR-206/neuropilin 1 (NRP1) were measured. The subcellular localization of lncRNA UCA1 was examined. The binding relationships between lncRNA UCA1 and microRNA (miR)-206, and between miR-206 and NRP1 were analyzed. NRP1 expression was analyzed by Western blot assay. We found that β-Asarone downregulated lncRNA UCA1 expression in carboplatin-resistant RB cells. Overexpression of lncRNA UCA1 reversed the inhibitory effect of β-Asarone on cell drug resistance and cell proliferation and reduced apoptosis. LncRNA UCA1 functioned as a sponge for miR-206, which suppressed NRP1 expression. Inhibition of miR-206 or overexpression of NRP1 could partially reverse the suppressive effect of β-Asarone on RB cell drug resistance. In conclusion, β-Asarone suppresses RB cell drug resistance through the lncRNA UCA1/miR-206/NRP1 axis.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Diversity and Drought Stress Tolerance of a Global Collection of Pearl Millet at Germination and Early Seedling Growth Stages. 全球珍珠粟种子萌发和幼苗生长早期的遗传多样性和抗旱性
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-23 DOI: 10.1007/s10528-024-10965-5
Haitham Saleh, Abdelfattah Badr, Ehab M Zayed, Elham R S Soliman
{"title":"Genetic Diversity and Drought Stress Tolerance of a Global Collection of Pearl Millet at Germination and Early Seedling Growth Stages.","authors":"Haitham Saleh, Abdelfattah Badr, Ehab M Zayed, Elham R S Soliman","doi":"10.1007/s10528-024-10965-5","DOIUrl":"https://doi.org/10.1007/s10528-024-10965-5","url":null,"abstract":"<p><p>Pearl millet {Pennisetum glaucum (L.) R. Br} is a C4 panicoid cereal millet crop grown in arid and semi-arid regions in Africa and Asia for food and fodder. This study involves the evaluation of the genetic diversity of 28 worldwide germplasm collection of pearl millet by genetic markers polymorphism and drought tolerance indices. The genetic diversity was expressed by 51 alleles of 9 ISSR markers that showed 96.43% total polymorphism and 11.76 alleles per marker. Cluster analysis of ISSR markers polymorphism divided the 28 genotypes into four clusters partially in agreement with their origin. The application of drought stress simulated by 20% PEG<sub>6000</sub> treatment, retarded the germination percentage, and reduced shoot and root length, seedling fresh and dry weights. Drought tolerance indices (DTIs) were calculated based on the response of the seedling traits under drought stress compared to the control seedlings. ANOVA revealed statistically significant variation among the genotypes (P ≤ 0.05), except for seedling fresh weight (P = 0.17 > 0.05) under control conditions and seedling dry weight (P = 0.99 > 0.05) under drought conditions. Genotypes having higher DTIs for three traits are regarded drought resistant, i.e., those from India, Ethiopia, Pakistan, and Nigeria. The calculated heritability values indicated that seedlings dry weight is the least trait affected by drought stress whereas root length is the most influenced trait. Hierarchical clustering, based on the DTI values, also grouped the genotypes partially concomitant to their origin. The correlation analysis demonstrated a modest positive correlation between shoot length and root length. A low correlation of r ≤ 0.12 was observed between the morphological DTI matrix and the genetic matrix. Nevertheless, high levels of genetic diversity were identified among the examined genotypes that may face genetic erosion by climatic constraints, and a high potential for creating agronomically superior cultivars by crossing widely divergent genotypes.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142876002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Whole Blood vs Serum-Derived Exosomes for Host and Pathogen-Specific Tuberculosis Biomarker Identification: RNA-Seq-Based Machine-Learning Approach. 用于宿主和病原体特异性结核病生物标记物鉴定的全血与血清衍生外泌体:基于RNA-Seq的机器学习方法。
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-23 DOI: 10.1007/s10528-024-11002-1
Dhammika Magana-Arachchi, Dushantha Madegedara, Upeka Bandara
{"title":"Whole Blood vs Serum-Derived Exosomes for Host and Pathogen-Specific Tuberculosis Biomarker Identification: RNA-Seq-Based Machine-Learning Approach.","authors":"Dhammika Magana-Arachchi, Dushantha Madegedara, Upeka Bandara","doi":"10.1007/s10528-024-11002-1","DOIUrl":"https://doi.org/10.1007/s10528-024-11002-1","url":null,"abstract":"<p><p>Mycobacterium tuberculosis (Mtb) remains a leading infectious disease responsible for millions of deaths. RNA sequencing is a rapidly growing technique and a powerful approach to understanding host and pathogen cross-talks via transcriptional responses. However, its application is limited due to the high costs involved.This study is a preliminary attempt to understand host-pathogen cross-talk during TB infection in different TB clinical cohorts using two biological fluids: Whole blood and serum exosomes (EXO). We conducted an RNA-sequencing machine-learning approach using 20 active TB (ATB), 11 latent TB (LTB), three healthy control (HC) whole blood datasets, and two ATB, LTB, and HC serum EXO datasets. During the study, host-derived differentially expressed genes (DEGs) were identified in both whole blood and EXOs, while EXOs were successful in identifying pathogen-derived DEGs only in LTB. The majority of the DEGs in whole blood were up-regulated between ATB and HC, and ATB and LTB, while down-regulated between LTB and HC, which was vice versa for the EXOs, indicating different mechanisms in response to different states of TB infection across the two different biological samples. The pathway analysis revealed that whole blood gene signatures were mainly involved in host immune responses, whereas exosomal gene signatures were involved in manipulating the host's cellular responses and supporting Mtb survival. Overall, identifying both host and pathogen-derived gene signatures in different biological samples for intracellular pathogens like Mtb is vital to decipher the complex interplay between the host and the pathogen, ultimately leading to more successful future interventions.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142880717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of rs2046045 SNP in PDE8B on TSH Levels: Insights into Genetic Susceptibility to Hypothyroidism. PDE8B中rs2046045 SNP对TSH水平的影响:对甲状腺功能减退的遗传易感性的见解
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-20 DOI: 10.1007/s10528-024-11005-y
Salim Khan, Nikki Rani, Anita Yadav, Ranjan Gupta
{"title":"Impact of rs2046045 SNP in PDE8B on TSH Levels: Insights into Genetic Susceptibility to Hypothyroidism.","authors":"Salim Khan, Nikki Rani, Anita Yadav, Ranjan Gupta","doi":"10.1007/s10528-024-11005-y","DOIUrl":"https://doi.org/10.1007/s10528-024-11005-y","url":null,"abstract":"<p><p>Hypothyroidism is the most prevalent thyroid disorder and leads to adverse effects on the human body. Serum thyroid stimulating hormone (TSH) values have been related to polymorphisms in multiple genes that may be involved in the regulation of thyroid function. The single nucleotide polymorphism (SNP) rs2046045 is situated in the intron region of the phosphodiesterase 8B (PDE8B) gene, which encodes a high-affinity cyclic adenosine monophosphate (cAMP)-specific phosphodiesterase widely expressed in thyroid tissue. The principal goal of the present study was to investigate the association between the SNP rs2046045 of the PDE8B gene and hypothyroidism. The study was designed as a case-control study, and a total of 160 hypothyroid and 160 healthy controls were involved. Blood samples were drawn from each individual, and deoxyribonuleic acid (DNA) was separated with a suitable DNA isolation kit. For genotyping, the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was employed. The IBM Statistical Package for Social Sciences (SPSS) 25.0 was utilized to analyze the statistical data. Age differences between the patients and controls were not observed in the present study. The genotype frequency of homozygous wild type (TT), homozygous mutate type (GG), and heterozygous (GT) was 45%, 2.5%, and 52.5%, respectively, in control subjects and 27.5%, 11.25%, and 61.25%, respectively, in cases, and showed a significant difference (p = 0.0002). The minor G allele frequency is elevated in hypothyroid patients as compared to healthy control subjects (41.87% vs. 28.75%), p = 0.0005. The presence of the mutant allele G of rs2046045 in the PDE8B gene correlates with elevated serum TSH levels in hypothyroid patients.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142871021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LncRNA SNHG16 Drives PD-L1-Mediated Immune Escape in Colorectal Cancer through Regulating miR-324-3p/ELK4 Signaling. LncRNA SNHG16通过调控miR-324-3p/ELK4信号驱动PD-L1介导的结直肠癌免疫逃逸
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-17 DOI: 10.1007/s10528-024-11000-3
Zhiyuan Chen, Zhenjuan Wu, Minghao Wu, Yu Zhang, Sha Hou, Xiangyang Wang, Ya Peng
{"title":"LncRNA SNHG16 Drives PD-L1-Mediated Immune Escape in Colorectal Cancer through Regulating miR-324-3p/ELK4 Signaling.","authors":"Zhiyuan Chen, Zhenjuan Wu, Minghao Wu, Yu Zhang, Sha Hou, Xiangyang Wang, Ya Peng","doi":"10.1007/s10528-024-11000-3","DOIUrl":"https://doi.org/10.1007/s10528-024-11000-3","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a common malignancy that claims the life of many patients. Nucleolar RNA host gene 16 (SNHG16) has been identified as an oncogene in CRC development. However, the role and mechanism of SNHG16 in CRC remain unclear. A total of 27 cases of CRC tumor tissues and adjacent tissues were collected to investigate the expression and correlation among SNHG16, miR-324-3p, ELK4 and PD-L1 using qRT-PCR, western blot and Pearson analysis. Cell proliferation, migration and invasion abilities were determined using CCK-8 and transwell assays. The cytotoxicity of CD8 + T cells and the apoptosis of CD8<sup>+</sup> T cells was evaluated by LDH assay and flow cytometry, respectively. Dual luciferase assay, RIP and ChIP methods were performed to verify molecular interactions. Our results showed that SNHG16, ELK4 and PD-L1 expression were abnormally elevated and miR-324-3p expression was decreased in tumor tissues from CRC patients and CRC cells. SNHG16 silencing resulted in suppression of cell growth, metastasis, and immune escape of CRC cells, which was reversed by miR-324-3p inhibitor and ELK4 overexpression. Mechanistically, SNHG16 acted as a competitive endogenous RNA to enhance ELK4 expression by sponging miR-324-3p, thereby provoking the transcription of PD-L1. Our results demonstrated that SNHG16 silencing led to the suppression of cell growth, metastasis, and immune escape of CRC cells through mediating miR-324-3p/ELK4/PD-L1 axis, offering promising targets for CRC treatment.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142833597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Let-7c-5p Targeting CHD7 Hinders Cervical Cancer Migration and Invasion by Regulating Cell Adhesion. 靶向CHD7的Let-7c-5p通过调节细胞粘附抑制宫颈癌的迁移和侵袭
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-16 DOI: 10.1007/s10528-024-10993-1
Huichuan Zhao, Lanying Zou, Jun Xu, Xiaoping Zhou, Ya Zhang
{"title":"Let-7c-5p Targeting CHD7 Hinders Cervical Cancer Migration and Invasion by Regulating Cell Adhesion.","authors":"Huichuan Zhao, Lanying Zou, Jun Xu, Xiaoping Zhou, Ya Zhang","doi":"10.1007/s10528-024-10993-1","DOIUrl":"10.1007/s10528-024-10993-1","url":null,"abstract":"<p><p>Cervical cancer is one of the most common cancers worldwide. Many studies have reported the involvement of various miRNAs in cervical cancer progression. Our study was centered at investigating how let-7c-5p affected cervical cancer migration and invasion by regulating cell adhesion and its molecular mechanism. Bioinformatics was used for the analysis on differentially expressed mRNAs in cervical cancer and the prediction of their upstream regulatory miRNAs. Immunohistochemistry was performed to assess the expression of CHD7 in cervical cancer tissue. qRT-PCR was performed for examining how much let-7c-5p and CHD7 were expressed. Dual-luciferase assay was performed to verify the regulatory relationship between CHD7 and let-7c-5p. The CCK-8 and transwell assays helped in detecting cell viability, invasion and migration. The ability by which cells adhered to each other was detected by employing cell adhesion assay. In addition, the expression levels of the proteins related to cell adhesion and CHD7 were detected by Western blot. A remarkable high expression-level of CHD7 was discovered in cervical cancer tissues and cells. The cell viability, migration and invasiveness could be suppressed by the knockdown of CHD7 which could also attenuate the expression of cell adhesion-related proteins. Bioinformatics analysis showed that CHD7 had an upstream regulatory gene, miRNA-let-7c-5p, which was markedly lowly expressed in cervical cancer tissues and cells. To validate the binding relationship between CHD7 and let-7c-5p, dual-luciferase assay was performed. Rescue experiments revealed that the cancer-inhibiting effect of let-7c-5p in cervical cancer could be reversed by overexpressed CHD7. let-7c-5p regulates cell adhesion and attenuates cervical cancer migration and invasiveness by targeting CHD7. It indicates that the involvement of let-7c-5p/CHD7 axis is of significance in cervical cancer progression, which opens up new possibilities for us to develop novel clinical treatments for cervical cancer.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination. mettl3介导的USP21的m6A甲基化通过去泛素化稳定H2BFS有助于肝细胞癌的进展。
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2024-12-16 DOI: 10.1007/s10528-024-10992-2
Peng Yao, Xiaozheng Li, Jiasui Chai, Jiejie Dong, Yan Chen, Tong Zhang, Xingren Guo
{"title":"METTL3-Mediated m6A Methylation of USP21 Contributes to Hepatocellular Carcinoma Progression by Stabilizing H2BFS Through Deubiquitination.","authors":"Peng Yao, Xiaozheng Li, Jiasui Chai, Jiejie Dong, Yan Chen, Tong Zhang, Xingren Guo","doi":"10.1007/s10528-024-10992-2","DOIUrl":"10.1007/s10528-024-10992-2","url":null,"abstract":"<p><p>Deubiquitinases play essential roles in hepatocellular carcinoma (HCC) progression, however, the role of ubiquitin-specific peptidase 21 (USP21) in HCC development remains unclear. The present work aims to analyze the effect of USP21 on tumor property of HCC cells and the underlying mechanism. mRNA expression levels of USP21 and H2BFS were analyzed by quantitative real-time polymerase chain reaction. Protein expression of USP21, E-cadherin, N-cadherin, Vimentin, H2BFS and methyltransferase 3 (METTL3) was assessed by western blotting assay or immunohistochemistry assay. Clonogenicity assay was used to analyze cell proliferation. Flow cytometry assay was performed to quantify apoptotic rate of cells. Wound-healing assay and transwell assay were conducted to analyze cell migration and invasion, respectively. Xenograft mouse model assay was performed to determine the effect of USP21 knockdown on tumor formation. m6A RNA immunoprecipitation assay (MeRIP) was used to analyze the effect of METTL3 silencing on methylated level of USP21. USP21 expression was upregulated in HCC tissues and cells when compared with control groups. USP21 silencing inhibited proliferation, migration and invasion and induced apoptosis of HCC cells, accompanied by the increased E-cadherin protein expression and decreased N-cadherin and Vimentin protein expression. Moreover, USP21 knockdown delayed tumor formation in vivo. USP21 stabilized H2BFS by deubiquitination, and H2BFS overexpression attenuated USP21 silencing-induced effects in HCC cells. Further, METTL3-mediated m6A methylation of USP21. METTL3-mediated m6A methylation of USP21 promoted HCC progression by stabilizing H2BFS through deubiquitination.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信