Biochemical Genetics最新文献

筛选
英文 中文
Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure. 对 KIR2DL4 基因在复发性植入失败中重要性的生物信息学分析
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-06-10 DOI: 10.1007/s10528-024-10857-8
Xin-Xian Zhang, Zhi-Chao Zhang, Yu-Shan Liu, Li Zhou, Yu-Qin Hu, Cai-Hong Zhang, Wen-Hui Song, Xiao-Hua Wu
{"title":"Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure.","authors":"Xin-Xian Zhang, Zhi-Chao Zhang, Yu-Shan Liu, Li Zhou, Yu-Qin Hu, Cai-Hong Zhang, Wen-Hui Song, Xiao-Hua Wu","doi":"10.1007/s10528-024-10857-8","DOIUrl":"10.1007/s10528-024-10857-8","url":null,"abstract":"<p><p>Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"2893-2911"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cardamomin Inhibits the Proliferation and Tumorigenesis of Bladder Cancer by ESR1 in PI3K/AKT Pathway. 卡达莫明通过 PI3K/AKT 通路中的 ESR1 抑制膀胱癌的增殖和肿瘤发生
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-06-12 DOI: 10.1007/s10528-024-10854-x
Peng Zhang, Dapeng Song, Zhidong Fang, Dekang Sun, Lin Wang, Lei Shi, Liang Gao, Xudong Jiang
{"title":"Cardamomin Inhibits the Proliferation and Tumorigenesis of Bladder Cancer by ESR1 in PI3K/AKT Pathway.","authors":"Peng Zhang, Dapeng Song, Zhidong Fang, Dekang Sun, Lin Wang, Lei Shi, Liang Gao, Xudong Jiang","doi":"10.1007/s10528-024-10854-x","DOIUrl":"10.1007/s10528-024-10854-x","url":null,"abstract":"<p><p>Cardamomin has been widely studied in cancer, but its role in cancer bladder cancer has not been mentioned. In this study, we validated the anti-cancer effect of cardamom and whether its potential mechanism is related to the PI3K/AKT pathway. After treating with different doses of cardamomin, the cytotoxicity was studied by CCK8. Secondly, we analyzed the effect of cardamomin on the proliferation, apoptosis and cell movement. Next, we analyzed the regulation of ESR1 by western blot and its impact on the PI3K/AKT pathway. We also transfected ESR1 overexpression and silencing vectors, and verified the transfection efficiency through RT-qPCR. Further, the specific mechanism of the drug's inhibitory effect on bladder cancer was also determined. We constructed the subcutaneous tumor model in vivo. After cardamomin administration, we mainly analyzed the positive expression of KI67 in tumor tissues by immunohistochemistry, and the apoptotic cells in tumor tissues by TUNEL, and related proteins in PI3K/AKT pathway by western blot. In this paper, cardamomin inhibited cell proliferation and invasion ability, blocked the transition of G0/G1 phase to S phase, and increased apoptotic rate of 5637 and HT1376 cells, as well as raised ESR1 expression. Cardamomin exerted anti-tumor effect through PI3K/AKT pathway. In vivo animal experiments indicated the inhibitory effect of cardamomin on subcutaneous implanted tumor. Cardamomin inhibited the positive expression of KI67 and promoted the TUNEL-positive cells in tumor tissues. Consistent with in vitro assay, cardamomin increased the expression of ESR1 and downregulated the PI3K/AKT pathway. Cardamomin has a significant inhibitory effect on bladder cancer, and upregulate the expression of ESR1 in bladder cancer through PI3K/AKT.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"2946-2966"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141309366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Mechanism of WWOX Inhibiting the Development of Esophageal Cancer by Inhibiting Hippo Signaling Pathway. WWOX 通过抑制 Hippo 信号通路抑制食管癌发展的分子机制
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-06-20 DOI: 10.1007/s10528-024-10856-9
Zihan Chen, Jingyu Sun, Lili Zhang, Yanglin Sun, Qingqing Ni, Hongkun Zhu, Miao Hui, Longzhen Zhang, Qiang Wang
{"title":"Molecular Mechanism of WWOX Inhibiting the Development of Esophageal Cancer by Inhibiting Hippo Signaling Pathway.","authors":"Zihan Chen, Jingyu Sun, Lili Zhang, Yanglin Sun, Qingqing Ni, Hongkun Zhu, Miao Hui, Longzhen Zhang, Qiang Wang","doi":"10.1007/s10528-024-10856-9","DOIUrl":"10.1007/s10528-024-10856-9","url":null,"abstract":"<p><p>With the emergence of combined surgical treatments, complemented by radiotherapy and chemotherapy, survival rates for esophageal cancer patients have improved, but the overall 5-year survival rate remains low. Therefore, there is an urgent need for further research into the pathogenesis of esophageal cancer and the development of effective prevention, diagnosis, and treatment methods. We initially utilized the GeneCards and DisGeNET databases to identify the esophageal cancer-associated gene WWOX (WW domain containing oxidoreductase). Subsequently, we employed RT-qPCR (Reverse transcription-quantitative PCR) and WB (western blot) to investigate the differential expression of WWOX in HEEC (human esophageal endotheliocytes) and various ESCC (esophageal squamous cell carcinoma) cell lines. We further evaluated alterations in cell proliferation, migration and apoptosis via CCK8 (cell counting kit-8) and clonal formation, Transwell assays and flow cytometry. Additionally, we investigated changes in protein expressions related to the Hippo signaling pathway (YAP/TEAD) through RT-qPCR and WB. Lastly, to further elucidate the regulatory mechanism of WWOX in ESCC, we performed exogenous YAP rescue experiments in ESCC cells with WWOX overexpression to investigate the alterations in apoptosis and proliferation. Results indicated that the expression of WWOX in ESCC was significantly downregulated. Subsequently, upon overexpression of WWOX, ESCC cell proliferation and migration decreased, while apoptosis increased. Additionally, the expression of YAP and TEAD were reduced. However, the sustained overexpression of YAP attenuated the inhibitory effects of WWOX on ESCC cell malignancy. In conclusion, WWOX exerts inhibitory effects on the proliferation and migration of ESCC and promotes apoptosis by suppressing the Hippo signaling pathway. These findings highlight the potential of WWOX as a novel target for the diagnosis and treatment of esophageal cancer.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3157-3169"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141431062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study. 伊拉克患者 ACE2 受体及其多态性在 COVID-19 感染和严重程度中的作用及其与血脂概况、凝血酶和 D-Dimer 水平的关系:一项横断面研究
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-07-31 DOI: 10.1007/s10528-024-10890-7
Ban Adnan Hatem, Ferdous A Jabir
{"title":"The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study.","authors":"Ban Adnan Hatem, Ferdous A Jabir","doi":"10.1007/s10528-024-10890-7","DOIUrl":"10.1007/s10528-024-10890-7","url":null,"abstract":"<p><p>COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3657-3675"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141858691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Omics Analysis of Primary Prostate Cancer Datasets Reveals Novel Biomarkers. 原发性前列腺癌数据集的多指标分析揭示了新的生物标记物
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-08-07 DOI: 10.1007/s10528-024-10899-y
Melis Tuncer, Muhammed Erkan Karabekmez, Filiz Kisaayak Collak
{"title":"Multi-Omics Analysis of Primary Prostate Cancer Datasets Reveals Novel Biomarkers.","authors":"Melis Tuncer, Muhammed Erkan Karabekmez, Filiz Kisaayak Collak","doi":"10.1007/s10528-024-10899-y","DOIUrl":"10.1007/s10528-024-10899-y","url":null,"abstract":"<p><p>Prostate cancer (PCa) ranks second in cancer-related deaths in men. Current screenings used in the diagnosis are not sufficient enough in the early stages therefore, more diagnostic biomarker studies are needed. We performed a meta-analysis on the biomarker potential of miRNAs, mRNAs, and methylation for the early stages of PCa by searching available microarrays from the GEO dataset for PCa tissue and benign prostatic hyperplasia (BPH) or normal adjacent to PCa. Target genes of miRNAs were determined using the miRWalk and miRDB datasets. The results were visualized using network analysis. qPCR quantification of potential miRNA and genes was performed in human prostate epithelial cell line (RWPE-1) and human prostate carcinoma epithelial cell line (22RV1). Our meta-analysis of potential biomarkers for the diagnosis of PCa identified several candidates. It was shown that miR-7-5p is overexpressed. CAMKK2, TMEM97 expression were upregulated and CLIP1 expression was downregulated and these genes were shown to be targets of miR-7-5p. CAMKK2, TMEM97, and CLIP1 genes were found to be hypermethylated. Although the changes in the expression levels of miR-7-5p and CAMKK2, TMEM97, and CLIP1 in the two cell lines used in our study were not consistent with the significant expression differences observed in the meta-analysis, our meta-analysis results would be promising in human prostate tissue or different human tumor cell line studies. This highlights the importance of our meta-analysis results in prostate cancer biomarker research, given the difficulty of experimental validation of our large-scale data meta-analysis results using a specific cell line.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3676-3693"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Validation of Biomarkers to Predict Early Diagnosis of Inflammatory Bowel Disease and Its Progression to Colorectal Cancer. 预测炎症性肠病早期诊断及其向结直肠癌发展的生物标志物的鉴定和验证。
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-09-26 DOI: 10.1007/s10528-024-10917-z
Farhat Khan, Naaziyah Abdulla, Thea-Leonie du Plessis, Kay Karlsson, Peter Barrow, Brendan Bebington, Liang Gu, Mandeep Kaur
{"title":"Identification and Validation of Biomarkers to Predict Early Diagnosis of Inflammatory Bowel Disease and Its Progression to Colorectal Cancer.","authors":"Farhat Khan, Naaziyah Abdulla, Thea-Leonie du Plessis, Kay Karlsson, Peter Barrow, Brendan Bebington, Liang Gu, Mandeep Kaur","doi":"10.1007/s10528-024-10917-z","DOIUrl":"10.1007/s10528-024-10917-z","url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD) has become a common global health problem as prevalence continues to rise. It is often associated with increased risk of colorectal cancer (CRC) development. Limitations in current IBD biomarker-based diagnosis hinder the accuracy of early detection of CRC progression. Therefore, in this study, we proposed the use of transcription factor (TF)-based biomarkers that can potentially detect the transition of IBD to CRC. Various bioinformatic analysis and online database validations, and RT-qPCR validations were performed to identify possible diagnostic TFs. RUNX1 was identified as a promising TF that regulates 106 IBD/CRC-related genes. The incorporation of RUNX1 in combination with currently known IBD biomarkers, FEV + NFKB1 + RELA, achieved a comparable sensitivity and specificity scores of 99% and 87%, respectively, while RUNX1 in combination with known CRC markers, CEA + TIMP1 + CA724 + CA199, achieved a sensitivity and specificity score of 97% and 99%, respectively. Furthermore, a small pilot RT-qPCR-based analysis confirmed a demarcated shift in expression profiles in CA724, CEA, RUNX1 and TIMP1 in IBD patients compared to CRC patients' tissue samples. Specifically, CA724 is noticeably elevated in IBD, while the levels of CEA, RUNX1 with TIMP1 are probable genes that may be employed in discerning IBD progression to CRC. Therefore, these preliminary results once validated in large patient cohorts could potentially have a significant impact on CRC disease stratification, resulting in a more precise prediction for treatment and treatment outcomes, especially in South African patients.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3717-3743"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271286/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AHNAK2 Regulates NF-κB/MMP-9 Signaling to Promote Pancreatic Cancer Progression. AHNAK2调控NF-κB/MMP-9信号,促进胰腺癌进展
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-06-12 DOI: 10.1007/s10528-024-10844-z
Na-Na Tang, Rong-Bo Xu, Bo Jiang, Hai-Ling Zhang, Xiao-Song Wang, Dan-Dan Chen, Ji-Jun Zhu
{"title":"AHNAK2 Regulates NF-κB/MMP-9 Signaling to Promote Pancreatic Cancer Progression.","authors":"Na-Na Tang, Rong-Bo Xu, Bo Jiang, Hai-Ling Zhang, Xiao-Song Wang, Dan-Dan Chen, Ji-Jun Zhu","doi":"10.1007/s10528-024-10844-z","DOIUrl":"10.1007/s10528-024-10844-z","url":null,"abstract":"<p><p>Early metastasis of pancreatic cancer (PaC) is a major cause of its high mortality rate. Previous studies have shown that AHNAK2 is involved in the progression of some tumors and is predicted to be an independent prognostic factor for PaC; however, the specific mechanisms through which AHNAK2 regulates PaC remain unclear. In this study, we examined the role of AHNAK2 in PaC and its potential molecular mechanisms. AHNAK2 mRNA and protein expression in PaC tissues and cells were measured using qRT-PCR and western blot analysis. After AHNAK2 knockdown using small interfering RNA, PaC cells were subjected to CCK-8 scratch, and Transwell assays to assess cell proliferation, migration, and invasion, respectively. Furthermore, the validation of the mechanistic pathway was achieved by western blot analysis. AHNAK2 mRNA and protein levels were up-regulated in PaC and silencing AHNAK2 significantly inhibited the proliferation, migration, and invasion of PaC cells. Mechanistically, AHNAK2 knockdown decreased the expression of phosphorylated p65, phosphorylated IκBα, and matrix metalloproteinase-9 (MMP-9), suggesting that activation of the NF-κB/MMP-9 signaling pathway was inhibited. Importantly, activation of NF-κB reversed the effects of AHNAK2 knockdown. Our findings indicate that AHNAK2 promotes PaC progression through the NF-kB/MMP-9 pathway and provides a theoretical basis for targeting AHNAK2 for the treatment of PaC.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"2912-2924"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141305129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
E2F1 Facilitates the Proliferation and Stemness of Gastric Cancer Cells by Activating CDC25B Transcription and Modulating the MAPK Pathway. E2F1 通过激活 CDC25B 转录和调节 MAPK 通路促进胃癌细胞的增殖和干性。
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-07-09 DOI: 10.1007/s10528-024-10864-9
Ming Liu, Chaobo Xu, Guoxiong Cheng, Zhengwei Chen, Xiaoming Pan, Yijun Mei
{"title":"E2F1 Facilitates the Proliferation and Stemness of Gastric Cancer Cells by Activating CDC25B Transcription and Modulating the MAPK Pathway.","authors":"Ming Liu, Chaobo Xu, Guoxiong Cheng, Zhengwei Chen, Xiaoming Pan, Yijun Mei","doi":"10.1007/s10528-024-10864-9","DOIUrl":"10.1007/s10528-024-10864-9","url":null,"abstract":"<p><p>Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3428-3447"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of HOXC Gene Family as Prognostic and Immune-Related Biomarkers in Breast Cancer Through mRNA Transcriptional Profile and Experimental Validation. 通过 mRNA 转录谱和实验验证鉴定作为乳腺癌预后和免疫相关生物标志物的 HOXC 基因家族
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-07-12 DOI: 10.1007/s10528-024-10884-5
Xiongtao Cheng, Jie Luo, Jianxiong Cao
{"title":"Identification of HOXC Gene Family as Prognostic and Immune-Related Biomarkers in Breast Cancer Through mRNA Transcriptional Profile and Experimental Validation.","authors":"Xiongtao Cheng, Jie Luo, Jianxiong Cao","doi":"10.1007/s10528-024-10884-5","DOIUrl":"10.1007/s10528-024-10884-5","url":null,"abstract":"<p><p>Breast cancer (BC) is the most common malignancy in women worldwide, and more effective biomarkers are urgently needed for the prevention and treatment of BC. Our study aimed to investigate the role of the HOXC gene family (HOXCs) and its relationship with the immune response in BC. The differential expression of HOXCs and its clinical prognostic significance in BC were explored using bioinformatics analysis, and the cBioPortal database was used to evaluate the genetic mutation profile of the HOXCs in BC. The results indicated that the expression levels of HOXC4, 10, 11, 12, and 13 were significantly increased in BC tissues compared with the normal tissues, and expressions of these genes were closely associated with BC stage, among them, high expression levels of HOXC10 and HOXC13 predicted poor outcome in BC patients. In addition, to elucidate the essential role of HOXCs in the tumor microenvironment and immunotherapeutic response of BC, the impact of HOXCs on the regulation of immune infiltration in BC was comprehensively assessed. The result showed that HOXC10 and HOXC13 expressions were significantly positively linked with the infiltration levels of CD8+T cell and M1 macrophage, while they were negatively related to Mast and Natural killer cells, suggesting the important influence of HOXCs on regulating tumor immunity in BC patients. Lastly, the RT-qPCR assay was employed to validate HOXCs expression in samples of BC patients. In conclusion, HOXCs may be a promising prognostic indicator and could regulate the immune infiltration in BC patients, thus being a promising targeted immunotherapy for BC.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3448-3464"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141589314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolomic Approach to Identify the Potential Metabolites from Alpinia malaccensis for Treating SARS-CoV-2 Infection. 用代谢组学方法鉴定治疗SARS-CoV-2感染的马钱子潜在代谢物
IF 2.1 4区 生物学
Biochemical Genetics Pub Date : 2025-08-01 Epub Date: 2024-07-02 DOI: 10.1007/s10528-024-10869-4
Esrat Jahan, Tanoy Mazumder, Tarek Hasan, Khondoker Shahin Ahmed, Muhammed Amanat, Hemayet Hossain, Sumaiya Jannat Supty, Israt Jahan Liya, Md Sadikur Rahman Shuvo, A F M Shahid Ud Daula
{"title":"Metabolomic Approach to Identify the Potential Metabolites from Alpinia malaccensis for Treating SARS-CoV-2 Infection.","authors":"Esrat Jahan, Tanoy Mazumder, Tarek Hasan, Khondoker Shahin Ahmed, Muhammed Amanat, Hemayet Hossain, Sumaiya Jannat Supty, Israt Jahan Liya, Md Sadikur Rahman Shuvo, A F M Shahid Ud Daula","doi":"10.1007/s10528-024-10869-4","DOIUrl":"10.1007/s10528-024-10869-4","url":null,"abstract":"<p><p>The advent of the new coronavirus, leading to the SARS-CoV-2 pandemic, has presented a substantial worldwide health hazard since its inception in the latter part of 2019. The severity of the current pandemic is exacerbated by the occurrence of re-infection or co-infection with SARS-CoV-2. Hence, comprehending the molecular process underlying the pathophysiology of sepsis and discerning possible molecular targets for therapeutic intervention holds significant importance. For the first time, 31 metabolites were tentatively identified by GC-MS analysis from Alpinia malaccensis. On the other hand, five phenolic compounds were identified and quantified from the plant in HPLC-DAD analysis, including (-) epicatechin, rutin hydrate, rosmarinic acid, quercetin, and kaempferol. Nine GC-MS and five HPLC-identified metabolites had shown interactions with 45 and 30 COVID-19-associated human proteins, respectively. Among the proteins, PARP1, FN1, PRKCA, EGFR, ALDH2, AKR1C3, AHR, and IKBKB have been found as potential therapeutic targets to mitigate SARS-CoV-2 infection. KEGG pathway analysis also showed a strong association of FN1, EGFR, and IKBKB genes with SARS-CoV-2 viral replication and cytokine overexpression due to viral infection. Protein-protein interaction (PPI) analysis also showed that TP53, MMP9, FN1, EGFR, and NOS2 proteins are highly related to the genes involved in COVID-19 comorbidity. These proteins showed interaction with the plant phytoconstituents as well. As the study offers a robust network-based procedure for identifying biomolecules relevant to COVID-19 disease, A. malaccensis could be a good source of effective therapeutic agents against COVID-19 and related viral diseases.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":"3287-3312"},"PeriodicalIF":2.1,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信