{"title":"伊拉克患者 ACE2 受体及其多态性在 COVID-19 感染和严重程度中的作用及其与血脂概况、凝血酶和 D-Dimer 水平的关系:一项横断面研究","authors":"Ban Adnan Hatem, Ferdous A Jabir","doi":"10.1007/s10528-024-10890-7","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study.\",\"authors\":\"Ban Adnan Hatem, Ferdous A Jabir\",\"doi\":\"10.1007/s10528-024-10890-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10890-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10890-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The Role of ACE2 Receptor and Its Polymorphisms in COVID-19 Infection and Severity and Its Association with Lipid Profile, Thrombin, and D-Dimer Levels in Iraqi Patients: A Cross-Sectional Study.
COVID-19 patients experience a complex interplay involving ACE2, thrombin, D-dimer, and lipid profile, yet its full understanding remains elusive. ACE2, a pivotal regulator of the renin-angiotensin system and the primary receptor for SARS-CoV-2 undergoes downregulation upon viral binding, potentially leading to severe cases with acute respiratory distress syndrome (ARDS). A specific ACE2 gene polymorphism (rs2285666) may be associated with COVID-19 susceptibility, with the A allele potentially increasing infection risk. COVID-19 disease progression is linked to coagulation abnormalities, but the exact connection with thrombin and D-dimer remains uncertain. A study examining coagulation parameters in COVID-19 patients admitted to Al-Diwania Educational Hospital from February to May 2022 found that thrombin and D-dimer levels were directly related to disease severity. Severe cases exhibited significantly altered coagulation function compared to mild and recovered cases, with notably higher D-dimer levels and elevated thrombin serum concentrations. Moreover, dyslipidemia, particularly low HDL cholesterol, is a prevalent comorbidity in COVID-19 patients and may be linked to worse outcomes. In conclusion, COVID-19 is associated with a prothrombotic state and dysregulation of the renin-angiotensin system due to ACE2 downregulation following viral binding. The intricate interplay between ACE2, thrombin, D-dimer, and lipid profile necessitates further investigation. The multifaceted nature of the disease demands continued research to unravel its pathogenesis and identify potential therapeutic targets.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.