Ming Liu, Chaobo Xu, Guoxiong Cheng, Zhengwei Chen, Xiaoming Pan, Yijun Mei
{"title":"E2F1 通过激活 CDC25B 转录和调节 MAPK 通路促进胃癌细胞的增殖和干性。","authors":"Ming Liu, Chaobo Xu, Guoxiong Cheng, Zhengwei Chen, Xiaoming Pan, Yijun Mei","doi":"10.1007/s10528-024-10864-9","DOIUrl":null,"url":null,"abstract":"<p><p>Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"E2F1 Facilitates the Proliferation and Stemness of Gastric Cancer Cells by Activating CDC25B Transcription and Modulating the MAPK Pathway.\",\"authors\":\"Ming Liu, Chaobo Xu, Guoxiong Cheng, Zhengwei Chen, Xiaoming Pan, Yijun Mei\",\"doi\":\"10.1007/s10528-024-10864-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10864-9\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10864-9","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
E2F1 Facilitates the Proliferation and Stemness of Gastric Cancer Cells by Activating CDC25B Transcription and Modulating the MAPK Pathway.
Gastric cancer (GC) is a health problem that concerns people around the world. CDC25B is an essential cell cycle regulatory factor that is overexpressed in a variety of tumor cells. CDC25B plays a vital part in the progression and proliferation of malignant tumors. However, it is not yet clear that how CDC25B affects the stemness of GC cells. The study used bioinformatics to detect the expression of E2F1 and CDC25B in GC tissues and their correlation, as well as pathways enriched by CDC25B. We detected the expression of E2F1 and CDC25B in GC cell lines using quantitative reverse transcription polymerase chain reaction and tested the combination relationship between E2F1 and CDC25B using chromatin immunoprecipitation (ChIP) and dual-luciferase assays. We measured cell viability using CCK-8 assay, evaluated sphere-forming efficiency using sphere formation assay, and determined cell proliferation ability using colony formation assay. We also analyzed the expression of stemness markers and MAPK pathway-related proteins using western blot. In GC tissues and cells, CDC25B was upregulated. Silencing CDC25B could affect the MAPK pathway, thereby repressing the proliferation and stemness of GC cells. As predicted by bioinformatics, CDC25B had an upstream transcription factor, E2F1, which also had a high expression level in GC. Dual-luciferase and ChIP assays confirmed the combination relationship between the two. Rescue experiments uncovered that overexpression of CDC25B could reverse the impact induced by E2F1 knockdown on proliferation and stemness of cells. In conclusion, E2F1 could activate CDC25B transcription to regulate the MAPK pathway and enhance the proliferation and stemness of GC cells. We revealed a potential regulatory pathway of stemness of GC cells that was mediated by CDC25B, providing new ideas for improving and innovating GC treatment.
期刊介绍:
Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses.
Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication.
Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses.
Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods.
Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.