对 KIR2DL4 基因在复发性植入失败中重要性的生物信息学分析

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xin-Xian Zhang, Zhi-Chao Zhang, Yu-Shan Liu, Li Zhou, Yu-Qin Hu, Cai-Hong Zhang, Wen-Hui Song, Xiao-Hua Wu
{"title":"对 KIR2DL4 基因在复发性植入失败中重要性的生物信息学分析","authors":"Xin-Xian Zhang, Zhi-Chao Zhang, Yu-Shan Liu, Li Zhou, Yu-Qin Hu, Cai-Hong Zhang, Wen-Hui Song, Xiao-Hua Wu","doi":"10.1007/s10528-024-10857-8","DOIUrl":null,"url":null,"abstract":"<p><p>Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure.\",\"authors\":\"Xin-Xian Zhang, Zhi-Chao Zhang, Yu-Shan Liu, Li Zhou, Yu-Qin Hu, Cai-Hong Zhang, Wen-Hui Song, Xiao-Hua Wu\",\"doi\":\"10.1007/s10528-024-10857-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10857-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10857-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

相关研究指出,杀手免疫球蛋白样受体2DL4(KIR2DL4)与妊娠早期的血管重塑有关,它可能在免疫中发挥重要作用。本研究从基因表达总库(GEO)数据库中提取了与复发性植入失败(RIF)相关的GSE58144数据集。首先进行免疫微环境分析,以分析 KIR2DL4 在 RIF 中的发病机制。然后,进行基因组富集分析(GSEA),研究KIR2DL4的功能。此外,还构建了TF-mRNA-miRNA和共表达网络,以揭示KIR2DL4的潜在调控机制。此外,还获得了与KIR2DL4相关且在RIF中差异表达的基因,并将其定义为关键基因,进一步探讨了这些基因的功能。KIR2DL4可用于RIF的临床诊断,并与RIF的免疫微环境变化相关。从功能角度看,KIR2DL4 与补体和凝血级联、自然杀伤细胞介导的细胞毒性等有关。此外,还构建了由 KIR2DL4、9 个 TF 和 29 个 miRNA 组成的 TF-mRNA-miRNA 调控网络。此外,还筛选出 KIR2DL4、ACSM1、IL2RB 和 PTPN11 等与免疫相关功能有关的关键基因。本研究深入分析了KIR2DL4的功能及其在RIF中的作用,发现STAT1可能通过INF-γ/JAK2/STAT1信号通路上调KIR2DL4。此外,黄体中期子宫内膜中过度表达的KIR2DL4可能会通过影响胚胎着床微环境而影响胚胎着床,这可能有助于加深对RIF分子机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure.

Bioinformatic Analysis of the Significance of the KIR2DL4 Gene in Recurrent Implantation Failure.

Related studies have pointed out that Killer immunoglobulin-like receptor 2DL4 (KIR2DL4) was associated with vascular remodeling in early pregnancy, and it might play an important role in immunity. In this study, recurrent implantation failure (RIF)-related GSE58144 dataset was extracted from the Gene Expression Omnibus (GEO) database. Firstly, the immune micro-environment analyses were conducted to analyze the pathogenesis of KIR2DL4 in RIF. Then, the gene set enrichment analysis (GSEA) was performed to investigate the function of KIR2DL4. Moreover, the TF-mRNA-miRNA and the co-expression networks were constructed to reveal the potential regulation of KIR2DL4. Furthermore, the genes that were associated with KIR2DL4 and differentially expressed in RIF were obtained and defined as key genes, and the functions of these genes were further explored. KIR2DL4 could be used for clinical diagnosis of RIF, and it was correlated with the changes in the immune micro-environment in RIF. From the perspective of function, KIR2DL4 was associated with complement and coagulation cascades, natural killer cell-mediated cytotoxicity, etc. Moreover, the TF-mRNA-miRNA regulatory network was constructed with KIR2DL4, 9 TFs, and 29 miRNAs. Furthermore, KIR2DL4, ACSM1, IL2RB, and PTPN11 were screened as key genes, which were associated with immune-related functions. This study deeply analyzed the function of KIR2DL4 and its role in RIF, and we found that STAT1 might up-regulate KIR2DL4 by INF-γ/JAK2/STAT1 signaling pathway. Besides, over-expressed KIR2DL4 in the mid-luteal endometrium might influence embryo implantation by affecting the embryo implantation microenvironment, which might help deepen the understanding of the molecular mechanism of RIF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信