{"title":"Grain structure control of TC11 alloy in laser direct energy deposition by a static magnetic field","authors":"Chunlun Chen, Haobo Sun, Zhenlin Zhang, Yongsheng Zhao, Yan Liu, Hui Chen","doi":"10.1016/j.mtla.2024.102267","DOIUrl":"10.1016/j.mtla.2024.102267","url":null,"abstract":"<div><div>This paper describes a novel in-situ adjustment method of static magnetic field (SMF) for laser additive manufacturing, which realizes the change of grain morphology and weave structure without changing the composition and performing post-processing. The TC11 alloy was prepared by laser direct energy deposition (LDED) under static SMF. The results show that a transverse static SMF of 0.5 T effectively suppresses the tendency of columnar crystals to grow continuously along the build direction and the dominant weaving direction of 〈0001〉 texture, and reduces the anisotropy of the TC11 alloy.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102267"},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-19DOI: 10.1016/j.mtla.2024.102270
A. Houba , M. El Ayoubi , A. Samiri , A. Atila , A. Hasnaoui
{"title":"Short and medium range order in the rapidly solidified metallic liquid Ta: Atomic packing, connection modes, and pressure effect","authors":"A. Houba , M. El Ayoubi , A. Samiri , A. Atila , A. Hasnaoui","doi":"10.1016/j.mtla.2024.102270","DOIUrl":"10.1016/j.mtla.2024.102270","url":null,"abstract":"<div><div>In this study, molecular dynamics (<em>MD</em>) simulations were utilized to explore the Short and Medium-Range Order (<em>MRO</em>) in the rapidly solidified metallic liquid tantalum (<em>Ta</em>). Radial distribution function (<em>RDF</em>) and Voronoi tessellation analysis (<em>VTA</em>) techniques were employed to thoroughly explore the effect of pressure on the connectivity and structural properties at the Short-Range Order (<em>SRO</em>) and <em>MRO</em> levels. Our findings indicate that, at a quenching rate of 10<sup>13</sup> K s<sup>-1</sup>, glassy states are achieved at or below 20 GPa, while crystalline phases emerge at 25 GPa. <em>VTA</em> analysis indicates a significant alteration in the local structure of glassy <em>Ta</em> with increasing pressure. Specifically, the fraction of icosahedral-like clusters decreases while the fraction of crystal-like clusters rises notably.</div><div>Furthermore, we highlight that icosahedral-like clusters strongly tend to form 3-atom connection mode, while crystal-like clusters prefer 2-atom and 4-atom connection modes. Notably, icosahedral-like clusters are identified as the primary contributors to the emergence of the left sub-peak in the second peak of the <em>RDF</em>. In contrast, all cluster types contribute to the appearance of the right sub-peak.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102270"},"PeriodicalIF":3.0,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-16DOI: 10.1016/j.mtla.2024.102262
Lucas Varoto , Pierre Lhuissier , Marta Majkut , Jean-Jacques Blandin , Sophie Roure , Anthony Papillon , Mélissa Chosson , Guilhem Martin
{"title":"Microstructure evolutions induced by electron beam melting of a sintered Cu-25Cr composite","authors":"Lucas Varoto , Pierre Lhuissier , Marta Majkut , Jean-Jacques Blandin , Sophie Roure , Anthony Papillon , Mélissa Chosson , Guilhem Martin","doi":"10.1016/j.mtla.2024.102262","DOIUrl":"10.1016/j.mtla.2024.102262","url":null,"abstract":"<div><div>Cu-Cr alloys are used as electrical contacts for medium voltage applications because of their desirable trade-off between electrical, thermal, and mechanical properties. However, few studies have investigated the microstructural evolutions caused by an electrical arc during an electrical breakdown. Herein, electron beam melting of a Cu-25Cr (wt.%) composite fabricated by solid-state sintering is used to mimic the thermal conditions of an electrical arc. The microstructure before and after melting was characterized using synchrotron x-ray computed microtomography and directly correlated with post-mortem electron microscopy observations. The melt pool consists of different zones: a fusion zone characterized by the complete melt of both Cu and Cr phases, and a partially melted zone where only the Cu phase is melted. Pores in the matrix or at the Cu/Cr interfaces are healed upon melting. Tracking large Cr-particles reveals significant spatial evolutions attributed to convective flows.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102262"},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-16DOI: 10.1016/j.mtla.2024.102248
Hamza Elbaza , Hanaa Mabroum , El Mehdi Toufik , Badre Eddine Halimi , Yousra Hamdan , Rachid El Fatimy , Hicham Ben youcef , Christèle Combes , Allal Barroug , Hassan Noukrati
{"title":"Delivery of sodium fusidate from alginate-reinforced, carbonated apatite cement: Physicochemical properties, release behavior, antibacterial and cytotoxicity properties","authors":"Hamza Elbaza , Hanaa Mabroum , El Mehdi Toufik , Badre Eddine Halimi , Yousra Hamdan , Rachid El Fatimy , Hicham Ben youcef , Christèle Combes , Allal Barroug , Hassan Noukrati","doi":"10.1016/j.mtla.2024.102248","DOIUrl":"10.1016/j.mtla.2024.102248","url":null,"abstract":"<div><div>The present work focuses on the development of composite cements based on dicalcium phosphate dihydrate (DCPD), calcium carbonate CaCO<sub>3</sub>, sodium alginate (AG), and sodium fusidate (FS). The effect of AG, setting accelerator (0.5 M of Na<sub>2</sub>HPO<sub>4</sub>), and antibacterial agent (FS) on the features (setting ability, injectability, cohesion, and compressive strength) of DCPD-CaCO<sub>3</sub>-based cement was investigated. The reference and composite cements are composed of a nanocrystalline carbonated apatite, similar to bone mineral, and an excess of unreacted vaterite (CaCO<sub>3</sub>). The incorporation of AG increased the composite cement's total porosity compared to the reference cement (CR). The evaluation of the injectability and cohesion properties showed that adding 10 wt % of AG resulted in a total extrusion of the paste with an improvement in the cohesion of the cement paste. The compressive strength of the cements raised from 3.2 for CR up to 7 MPa with the addition of 10 % of AG and Na<sub>2</sub>HPO<sub>4</sub> . The setting time is significantly reduced by introducing Na<sub>2</sub>HPO<sub>4</sub>, resulting in appropriate values (≤ 30 min) for clinical use. Moreover, incorporating 3 wt % of FS in the composite cements had no significant effect on their features. The release study of FS-loaded composites showed sustained and controlled release profiles, with daily released amounts at the therapeutic level. The antibacterial activity of the designed FS-loaded composites demonstrated the effectiveness of the specimens in inhibiting the growth of <em>S. Aureus</em>. Furthermore, the in vitro biological tests did not show any toxicity of the tested cements towards hPBMCs, thereby confirming their biocompatibility.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102248"},"PeriodicalIF":3.0,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tuning austenite stability through prior microstructure control in a low-alloy Q&P steel","authors":"Melissa Thrun , Virginia Euser , Amy Clarke , Kester Clarke","doi":"10.1016/j.mtla.2024.102261","DOIUrl":"10.1016/j.mtla.2024.102261","url":null,"abstract":"<div><div>Quenching and partitioning (Q&P) processing is a widely accepted heat treatment methodology for creating high strength steels consisting of ferrite, martensite, and austenite, while maintaining relatively low manufacturing costs. Though the research on effects of prior microstructure is limited, an understanding of the heat treatment response of different starting microstructures is critical to processing and creating steels with complex microstructures that contain retained austenite and may afford opportunities to further optimize properties. This study investigates the influence of starting microstructure (ferrite/pearlite versus martensite) and prior levels of cold work (38 verses 58 %) on the microstructural development and mechanical properties of a 0.2 C-2.0 Mn-1.5 Si (wt.%) steel exposed to Q&P processing. Samples with a starting martensitic microstructure resulted in higher retained austenite fractions and a more homogeneous microstructure after Q&P processing compared to a starting microstructure of ferrite-pearlite. Starting martensitic microstructures also displayed higher work hardening rates and higher uniform elongations. Larger cold reductions saw accelerated dissolution kinetics and austenite formation during intercritical annealing, resulting in more similar final microstructures from the ferrite-pearlite and martensitic starting microstructures. The results presented here indicate that varying prior processing can be a route to manipulate and control austenite stability in a Q&P processed steel.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102261"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-15DOI: 10.1016/j.mtla.2024.102260
I. Daki , N. Saloumi , C. Assamadi , A. Ouafik , S. Mansouri , M. Yousfi , J-F. Gérard , J. Duchet-Rumeau , M. Oumam , O. Cherkaoui , H. Hannache , M. El Bouchti
{"title":"Synthesis and characterization of new continuous phosphate glass fibers intended for structural engineering applications: Structure/property relationships","authors":"I. Daki , N. Saloumi , C. Assamadi , A. Ouafik , S. Mansouri , M. Yousfi , J-F. Gérard , J. Duchet-Rumeau , M. Oumam , O. Cherkaoui , H. Hannache , M. El Bouchti","doi":"10.1016/j.mtla.2024.102260","DOIUrl":"10.1016/j.mtla.2024.102260","url":null,"abstract":"<div><div>Nowadays, phosphate glass fibers (PGF) are considered quite competitive respective to conventional glass fibers. This work focus on the development of PGF fibers intended for structural engineering applications such as composite reinforcement for building and automotive fields. For this purpose, two series of phosphate glasses based on 52P<sub>2</sub>O<sub>5</sub>–24CaO-13MgO-(11-(<em>X</em>+ <em>Y</em> + <em>Z</em>)) K2O-XAL<sub>2</sub>O<sub>3</sub>-YF<sub>2</sub>O<sub>3</sub>-ZTiO<sub>2</sub>; (<em>X</em>=1; 3; 5, <em>Y</em>=0; 5, <em>Z</em>=0; 1 mol%) were processed and transformed into phosphate glass fibers by melt spinning. The resulting fibers were characterized. XRD analysis confirmed the non-crystalline nature of phosphate glasses. In addition, the substitution of K<sub>2</sub>O by Al<sub>2</sub>O<sub>3</sub> and by the combination of Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub> in the composition of phosphate glass could lead to a significant increase in fiber density from 2,16 g/cm<sup>3</sup> to 2,80 g/cm<sup>3</sup>. The stability of the produced phosphate glass fibers was examined using two methods: weight loss at 37 °C and dissolution kinetics under different pH levels (4, 7, and 12). The results showed that the chemical resistance of the PGF fibers was improved with up to 99 % increase respective to the original formulation. In addition, the mechanical properties of the spinnable phosphate glass manufactured by replacing K<sub>2</sub>O oxide by Al<sub>2</sub>O<sub>3</sub> oxide were improved, such a substitution led to a maximum tensile strength and modulus of 2668 MPa and 140 GPa, respectively. Therefore, the tensile proprieties were improved by 75 % compared to the original formulation. This comparative study between phosphate glass fibers (PGF) and traditional fibers highlight similar tensile strength but combined to notable enhancements in chemical stability through cation addition, expanding their potential use in composite and biomedical materials. Finally, a correlation analysis of mechanical performances was carried out. It was observed that the results obtained using the statistical methods were consistent with the experimental data.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102260"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-15DOI: 10.1016/j.mtla.2024.102264
Wenguang Liao , Veronika Mazánová , Milan Heczko , Wenkao Hou , John Procario , Michael J. Mills , Xun Liu
{"title":"Underlying mechanisms for the effect of Nb micro-alloying on the elemental distribution and precipitation behavior in the X70 weld metal","authors":"Wenguang Liao , Veronika Mazánová , Milan Heczko , Wenkao Hou , John Procario , Michael J. Mills , Xun Liu","doi":"10.1016/j.mtla.2024.102264","DOIUrl":"10.1016/j.mtla.2024.102264","url":null,"abstract":"<div><div>Niobium (Nb) is a widely recognized micro-alloying element due to its low cost and substantial impact on steel properties. While the effect of Nb in processed steels has been well investigated, studies on its elemental distribution and precipitation behavior in weld metal remain scarce. This study focuses on the weld metal of specially designed Nb-rich X70 pipeline steel by scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDS) characterization, complemented with thermodynamic and kinetics modeling analysis. In the majority of the weld, Nb was essentially uniformly distributed. This suggests that Nb primarily exists in the solid solution form in the weld metal, which is also supported by precipitation kinetics modeling results. This is primarily due to the short thermal history associated with the welding process, which leads to insufficient time for the uniform precipitation of Nb. Two instances of Nb precipitates were observed at the weld centerline and reinforcement region. The low partition coefficient of Nb results in an elevated local concentration along the weld centerline. However, precipitation kinetics calculations suggest that this enhancement alone is not adequate to induce precipitate formation. The occurrence of MnS and the prior formation of Ti precipitates may provide heterogeneous nucleation sites for Nb, facilitating the nucleation of Nb precipitates in the weld centerline and reinforcement region.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102264"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-15DOI: 10.1016/j.mtla.2024.102263
S. Gholizadeh , S Chung Kim Yuen , S.L. George
{"title":"Post-localized blast experimental investigation of mechanical properties and microstructural evolutions in austenitic stainless steel 316L","authors":"S. Gholizadeh , S Chung Kim Yuen , S.L. George","doi":"10.1016/j.mtla.2024.102263","DOIUrl":"10.1016/j.mtla.2024.102263","url":null,"abstract":"<div><div>Mechanical loading causes material deformation, resulting in changes in mechanical properties due to microstructural alterations such as the multiplication of dislocations and evolution of grain morphology. Blast loading, a condition where materials deform at high strain rates, results in significant plastic deformation. This rapid deformation induces intense mechanical stresses, causing complex microstructural changes that influence the mechanical behavior and performance of the materials. Consequently, designing structures to withstand blast loading requires understanding the relationship between microstructure and property evolution. As the primary objective of this study, post-localized blast experiments have been conducted to elucidate the variability in microstructural response of Austenitic stainless steel (ASS) 316 L, characterized by its face-centered cubic crystal structure. Localized blast loads were applied to square test plates, 2 mm thick, with a circular exposed area of 106 mm in diameter. Quantitative mechanical property data from key zones within the deformed dome were determined through using a novel micro-tensile testing approach and nanoindentation tests. Electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM) technique was employed to characterize the microstructural changes in the selected samples. The results revealed that blast loading induced complex mechanical and microstructural changes in ASS 316 L, including enhanced material strength, reduced ductility, and significant alterations in grain orientation and misorientation distributions. The materials underwent significant strain hardening due to the increased stress and deformation, resulting in a more resistant to plastic deformation and the greatest internal strain accumulations. Texture analysis underscored the influence of deformation geometry, with Goss and Copper emerging as predominant texture components.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102263"},"PeriodicalIF":3.0,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537977","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-12DOI: 10.1016/j.mtla.2024.102259
Apoorv Sobti , Kallol Mondal , Ranjit Kumar Ray , S. Sankaran
{"title":"Influencing TRIP threshold and variant pairing through minor cold and cryo-rolling in bainitic steel","authors":"Apoorv Sobti , Kallol Mondal , Ranjit Kumar Ray , S. Sankaran","doi":"10.1016/j.mtla.2024.102259","DOIUrl":"10.1016/j.mtla.2024.102259","url":null,"abstract":"<div><div>An attempt has been made to compare the effects of small reduction cold and cryo-rolling on the microstructural evolution and stability of retained austenite in a 3rd generation advanced high-strength bainitic steel. The steel was heat treated and isothermally held at 300 °C for 2 h above M<sub>s</sub> temperature to obtain bainitic microstructure. The heat-treated steel was subsequently subjected to cold-rolling and cryo-rolling (10 % reduction in thickness). The substructure of bainite consists of packets, blocks, and sub-blocks. Both the crystallite size and micro-strain of bainitic ferrite shows a decreasing trend after rolling compared to the undeformed condition. However, cryo-rolling induces higher micro-strain in retained austenite, which enhances its mechanical stability requiring higher stress to trigger the transformation induced plasticity (TRIP) effect, thus contributing to increased overall strength. Crystallographic variant analysis showed an increase in the boundary density and frequency of specific V1-V3(V5) (high angle block boundaries) and V1-V4 (sub-block boundaries) variant pairs after cryo-rolling following the K-S orientation relationship. While the heat-treated, undeformed state exhibited all the variants without preference for any particular variant pair. The results suggest that the mechanical properties of the steel after minor cryo-rolling are significantly influenced by crystallographic variant pairing and microstrain. Additionally, minor cryo-rolling proved to be superior to cold rolling in bainitic steel as it increased the threshold strain required for the TRIP effect during rolling.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102259"},"PeriodicalIF":3.0,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the Sr2GdTi2Nb3O15 ceramic: Investigation into its structural properties and complex impedance spectroscopy","authors":"Karim Chourti, Amine Bendahhou, Ilyas Jalafi, Fatima Chaou, Soufian El Barkany, Mohamed Abou-salama","doi":"10.1016/j.mtla.2024.102256","DOIUrl":"10.1016/j.mtla.2024.102256","url":null,"abstract":"<div><div>In this study, we successfully synthesized tetragonal tungsten bronze with the nominal formula Sr<sub>2</sub>GdTi<sub>2</sub>Nb<sub>3</sub>O<sub>15</sub> and systematically examined of its structure, dielectric, and electrical properties. The material was synthesized through the solid-state reaction technique at a temperature of 1350 °C. The formation of the tetragonal tungsten bronze in the <em>P4/mbm</em> space group was verified via Rietveld refinement using X-ray diffraction data. The electrical characteristics of the ceramic were examined using non-destructive complex impedance spectroscopy (CIS) across a range of frequencies (10–10<sup>6</sup> Hz) at various temperatures. The real component of impedance (Z') displayed a decrease with rising frequency, suggesting a negative temperature coefficient of resistance (NTCR) for this sample. The Cole-Cole plot of the compound exhibits two semicircles, with the compound's resistance gradually decreasing as the temperature increased. Moreover, the activation energy (E<sub>a</sub>) was found to be approximately 0.9 eV, which confirms that oxygen vacancies are responsible for the observed relaxation behavior. Complex modulus analysis confirmed the presence of non-Debye relaxations. These results contribute to a thorough comprehension of the structural and electrical characteristics of Sr<sub>2</sub>GdTi<sub>2</sub>Nb<sub>3</sub>O<sub>15</sub>, opening avenues for potential applications in diverse electronic devices.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102256"},"PeriodicalIF":3.0,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}