MaterialiaPub Date : 2024-11-10DOI: 10.1016/j.mtla.2024.102290
Y. Sakamoto , S. Ishihara , K. Masuda , W. Yamazaki , M. Shimura
{"title":"Study on changes in intermetallic compounds and whisker formation over time in Sn/Cu plating","authors":"Y. Sakamoto , S. Ishihara , K. Masuda , W. Yamazaki , M. Shimura","doi":"10.1016/j.mtla.2024.102290","DOIUrl":"10.1016/j.mtla.2024.102290","url":null,"abstract":"<div><div>In Sn/Cu plating, whiskers are formed because of the formation of intermetallic compounds (IMCs) at the Sn/Cu interface and along the Sn grain boundaries. Many previous studies have focused on the mechanism of whisker formation and the change in whisker density over time. However, only a few studies have focused on the formation and growth behavior of IMCs and the correlation between IMCs and whiskers. Furthermore, no studies have quantitatively investigated the time-dependent changes in the formation and growth behavior of IMCs and whiskers using mathematical formulas. In this study, Sn/Cu plating was applied to a 7–3 brass substrate, and the formation and growth of IMCs at the Sn/Cu interface and the behavior of whisker formation were studied. An approximate equation was derived based on the reaction kinetics to quantitatively express the time-dependent changes in both parameters. Three differences were observed between the formation behaviors of IMCs and whiskers. First, no incubation time t<sub>th</sub> was observed for IMC formation, but it was for whiskers. Second, the whisker density increased until t = 10 d and then saturated. However, the IMC density increased until t = 70 d and then became saturated. Third, the IMC density in the cross section is 7–10 times higher than the whisker density, and the rate constant of the IMCs is smaller than that of the whiskers.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102290"},"PeriodicalIF":3.0,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-09DOI: 10.1016/j.mtla.2024.102289
Pengyuan Li , Hongyong Xia , Wei Shang , Shuang Zhang , Xiang Li , Yongqing Fu , Junjie Xu , Longlong Dong
{"title":"Interfacial engineering reaction strategy of in-situ Cr23C6/CoCrFeNi composites with network structure for high yield strength","authors":"Pengyuan Li , Hongyong Xia , Wei Shang , Shuang Zhang , Xiang Li , Yongqing Fu , Junjie Xu , Longlong Dong","doi":"10.1016/j.mtla.2024.102289","DOIUrl":"10.1016/j.mtla.2024.102289","url":null,"abstract":"<div><div>CoCrFeNi high-entropy alloy (HEA) has distinctive properties such as high hardness and good corrosion resistance, however, its low strength or poor yield strength at room temperature limits its wide-range applications in industry. Herein, Cr<sub>23</sub>C<sub>6</sub> particles reinforced CoCrFeNi composites with graphene nanoplates as a precursor were fabricated using <em>in-situ</em> reaction spark plasma sintering and cold rolling annealing processes. Results showed that the microstructure of the CoCrFeNi HEA and their composites were face-centered cubic structures before and after annealing, and Cr<sub>23</sub>C<sub>6</sub> particles were precipitated inside the matrix during SPS. The precipitated Cr<sub>23</sub>C<sub>6</sub> particles exerted strong pinning forces to migrate dislocations and grain boundaries, effectively refining the grains during the annealing process. After cold rolling, Cr<sub>23</sub>C<sub>6</sub>/CoCrFeNi composites showed a typically banded deformation structure. After annealing, fine equiaxed grains were distributed around the deformed grains, and the proportion of equiaxed grains was increased with the annealing time. The yield strength (YS) of Cr<sub>23</sub>C<sub>6</sub>/CoCrFeNi composites was significantly higher than that of CoCrFeNi alloy after cold rolling and annealing. When annealed for 20 min, the YS and elongation of Cr<sub>23</sub>C<sub>6</sub>/CoCrFeNi composites with 0.3 wt% graphene addition were 1100 MPa and 6 %, respectively. The YS was 68.2 % higher than that of the CoCrFeNi alloy. We have identified that the improvement of mechanical properties of Cr<sub>23</sub>C<sub>6</sub>/CoCrFeNi composites is mainly attributed to grain refinement, dislocation strengthening, precipitation strengthening, and load transfer strengthening, among which dislocation strengthening plays a major role.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102289"},"PeriodicalIF":3.0,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-07DOI: 10.1016/j.mtla.2024.102283
Zhening Yang , Alexander Richter , Hui Sun , Zi-Kui Liu , Allison M. Beese
{"title":"Circumventing cracking in grading 316L stainless steel to Monel400 through compositional modifications in directed energy deposition","authors":"Zhening Yang , Alexander Richter , Hui Sun , Zi-Kui Liu , Allison M. Beese","doi":"10.1016/j.mtla.2024.102283","DOIUrl":"10.1016/j.mtla.2024.102283","url":null,"abstract":"<div><div>In joining Fe-alloys and Cu-containing alloys to access the high strength of steels and corrosion resistance of Cu-alloy, cracking is widely observed due to the significant Cu microsegregation during the solidification process, resulting in an interdendritic Cu-rich liquid film at the end of solidification. By fabricating functionally graded materials (FGMs) that incorporate additional elements like Ni in the transition region between these terminal alloy classes, the hot cracking can be reduced. In the present work, the joining of stainless steel 316L (SS316L) and Monel400 by modifying the Ni concentration in the gradient region was studied. A new hot cracking criterion based on hybrid Scheil-equilibrium approach was developed and validated with monolithic multi-layer samples within the SS316L-Ni-Monel400 three-alloy system and a SS316L to 55/45 wt% SS316L/Ni to Monel400 FGM sample fabricated by direct energy deposition (DED). The new hot cracking criterion, based on the hybrid Scheil-equilibrium approach, is expected to help design FGM paths between other Fe-alloys and Cu-containing alloys as well.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102283"},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-07DOI: 10.1016/j.mtla.2024.102282
Emanuela Cerri, Emanuele Ghio
{"title":"On the work-hardening behaviour of the additively manufactured Al-Si-Mg alloys: Composite-like versus networked microstructure","authors":"Emanuela Cerri, Emanuele Ghio","doi":"10.1016/j.mtla.2024.102282","DOIUrl":"10.1016/j.mtla.2024.102282","url":null,"abstract":"<div><div>Al-Si-Mg alloys are widely used for manufacturing components via laser powder bed fusion in various industrial applications where ductility and the capacity to accommodate the strain hardening are key criteria. The ductility of the laser powder bed-fused Al alloys has become a crucial property due to their fine cellular microstructure. Post-processing heat treatments improve ductility, but resultant microstructural changes affect the work-hardening behaviour, deformability, and uniform elongation values. This study aims to investigate the work-hardening capability, uniform elongation and deformability of AlSi7Mg and AlSi10Mg samples after different post-processing heat treatments by using tensile tests, optical and scanning electron microscopies. At aging temperatures below 200 °C, the fully cellular structure of eutectic Si governs both the work-hardening behaviour and the strengthening mechanisms, despite the precipitation phenomenon. When direct-aging temperatures exceed 200 °C, the coarsening of the Si-eutectic network modifies work-hardening behavior (Stages 1–3), accentuating the effects induced by the precipitates. Artificial aging highlights the role of precipitates in controlling both work-hardening properties and deformability.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102282"},"PeriodicalIF":3.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-06DOI: 10.1016/j.mtla.2024.102286
Christopher M. Sample, Anthony G. Spangenberger, Diana A. Lados
{"title":"Ultrasonic and conventional fatigue behavior, strain rate sensitivity, and structural design methods for wrought and cold spray Al-6061","authors":"Christopher M. Sample, Anthony G. Spangenberger, Diana A. Lados","doi":"10.1016/j.mtla.2024.102286","DOIUrl":"10.1016/j.mtla.2024.102286","url":null,"abstract":"<div><div>Cold spray is an additive manufacturing process that accelerates powder particles to supersonic speeds to create repairs and bulk depositions with fine-grained microstructures, high density, and good mechanical properties. Fatigue property measurement for these novel materials is critical for their use in safety-critical components, which can be accelerated with the use of ultrasonic fatigue testing. In this work, ultrasonic (20 kHz) and conventional (20 Hz) fatigue studies were conducted on as-sprayed bulk Al-6061 and conventional wrought Al-6061-T6. Complementary fatigue studies of surface preparation (surface finish and residual stress) and fatigue specimen geometry (round versus flat), as well as hole-drilling residual stress measurements, were undertaken to minimize the influence of these confounding variables. Cold spray Al-6061 exhibits fatigue frequency sensitivity, whereas the wrought material does not. Tensile testing at varied strain rates indicates that a portion of the fatigue frequency effect can be attributed to strain rate sensitivity. Fractographic studies show that crack initiation occurs from unbonded powder particles at the surface at high stress amplitude, and transitions sub-surface at lower stress amplitude. The results of these studies were used to create frequency-corrective models of S-N data and Kitagawa-Takahashi diagrams that can be used to design for fatigue crack initiation and growth resistance.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102286"},"PeriodicalIF":3.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142700377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-05DOI: 10.1016/j.mtla.2024.102284
Sunando Banerjee, Akhand Pratap Singh, G. Mohan Kumar, Chandan Srivastava
{"title":"Effect of texture, grain boundary constitution, and molybdenum partitioning on corrosion and hydrogen permeation behavior of pulse electrodeposited Ni-Mo coatings","authors":"Sunando Banerjee, Akhand Pratap Singh, G. Mohan Kumar, Chandan Srivastava","doi":"10.1016/j.mtla.2024.102284","DOIUrl":"10.1016/j.mtla.2024.102284","url":null,"abstract":"<div><div>Microstructural evolution, electrochemical corrosion and hydrogen permeation in pulse electrodeposited Ni-Mo coatings (2, 4, 8, and 11wt% Mo) were investigated. Electrochemical impedance spectroscopy and potentiodynamic polarization measurements revealed improved corrosion resistance at an optimum Mo content. The corrosion current density <em>i<sub>corr</sub></em> and polarization resistance <em>R<sub>p</sub></em> values obtained were 13.8 μA/cm<sup>2</sup> and 1745 Ωcm<sup>2</sup> respectively for pure Ni coating while the <em>i<sub>corr</sub></em> and <em>R<sub>p</sub></em> values obtained were 1.7 μA/cm<sup>2</sup> and 5406 Ωcm<sup>2</sup> respectively for Ni-4wt% Mo coating. Further, increase in the Mo content beyond 4 wt% increased the corrosion rate. Nevertheless, corrosion resistance of Ni-Mo coatings was found to be higher than the pure Ni coating. Ni-Mo coatings contained relatively Mo-enriched clusters in a solid solution matrix. The highest corrosion resistance of Ni-4wt% Mo coating was due to lower energy (001) and (111) textures, lower energy grain boundary constitution, and low coating strain. In Ni-4wt% Mo coating, Mo-enriched Ni-Mo nanoclusters inhibited hydrogen passage by providing a torturous path. In contrast, a high fraction of high-angle grain boundaries (compared to pure Ni coating) facilitated hydrogen permeation leading to a similar extent of hydrogen permeation through pure Ni and Ni-4wt% Mo coatings.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102284"},"PeriodicalIF":3.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-11-05DOI: 10.1016/j.mtla.2024.102285
Masoud Shekargoftar , Samira Ravanbakhsh , Vinicius Sales de Oliveira , Joseph Buhagiar , Nicolas Brodusch , Stéphanie Bessette , Carlo Paternoster , Frank Witte , Andranik Sarkissian , Raynald Gauvin , Diego Mantovani
{"title":"Effects of plasma surface modification of Mg-2Y-2Zn-1Mn for biomedical applications","authors":"Masoud Shekargoftar , Samira Ravanbakhsh , Vinicius Sales de Oliveira , Joseph Buhagiar , Nicolas Brodusch , Stéphanie Bessette , Carlo Paternoster , Frank Witte , Andranik Sarkissian , Raynald Gauvin , Diego Mantovani","doi":"10.1016/j.mtla.2024.102285","DOIUrl":"10.1016/j.mtla.2024.102285","url":null,"abstract":"<div><div>Magnesium (Mg) alloys have emerged as promising materials for biodegradable implants in orthopedic, oral, and cardiovascular applications. Despite their potential, high corrosion rate, and release of diatomic hydrogen in the surrounding environment remain the unmet challenges. In this research, oxygen plasma ion immersion implantation (O-PIII) was investigated in an attempt to modify the degradation rate of Mg-2Y-2Zn-1Mn alloy. In particular, the effects of pulse duration (<em>t<sub>pd</sub></em>) and pressure (<em>p</em>) on the degradation rate were investigated. For all the investigated conditions, plasma treatment enriched the surface chemical composition with O, forming a Mg- and Y- rich oxide layer. Mg and Y elements were mainly concentrated at grain boundaries. The concurrent phenomena of sputtering and energetic implantation led to crystalline Y<sub>2</sub>O<sub>3</sub> formation. Electrochemical investigations confirm that the degradation rate of samples decreased significantly, from ∼0.23 mm/y for untreated to ∼0.07 mm/y for O-PIII conditions. These findings demonstrate the effectiveness of O-PIII in changing surface properties and controlling corrosion rate of Mg alloys.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102285"},"PeriodicalIF":3.0,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid biofabrication of cell-free, anisotropic collagen tissues using a novel horizontal shear flow technique","authors":"Alessandra Grillo , Maria Caluianu , Augustin Barna , Avantika Mair , Arnau Garriga Casanovas , Vivek Mudera , Alvena Kureshi","doi":"10.1016/j.mtla.2024.102281","DOIUrl":"10.1016/j.mtla.2024.102281","url":null,"abstract":"<div><div>Ultrastructure and organisation of collagen fibres is essential to tissue function, due to the loadbearing properties of collagen. Current techniques used to create aligned collagen tissue equivalents use the contractile ability of cells to remodel and align collagen fibres or utilise highly specialised pieces of equipment. The aim of this study is to develop a novel and rapid method to produce acellular aligned collagen sheets by combining horizontal shear flow (HSFlow) and the established RAFT method to remove excess fluid from a hydrogel.</div><div>Force applied to the gel during the HSFlow process was measured to allow replication of the method. Quantification of fibres and cellular alignment revealed a significant difference between HSFlow and control samples, where both cells and collagen fibres showed alignment in the direction of shear flow, compared to the randomly aligned RAFT controls. Mechanical properties were also measured and revealed that HSFlow does not appear to improve the strength of the constructs despite the improved alignment, therefore further optimisation is needed to strengthen the constructs.</div><div>In conclusion, we developed a novel and rapid technique to generate flat sheets of aligned collagen without relying on the contractile ability of cells to rearrange collagen fibres. This rapid method has potential to be used in the fabrication of a scaffold to mimic anisotropic tissues for regenerative medicine.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102281"},"PeriodicalIF":3.0,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MaterialiaPub Date : 2024-10-30DOI: 10.1016/j.mtla.2024.102279
Bonnie C. Whitney , Theron M. Rodgers , Anthony G. Spangenberger , Aashique A. Rezwan , David Montes de Oca Zapiain , Diana A. Lados
{"title":"Solidification and crystallographic texture modeling of laser powder bed fusion Ti-6Al-4V using finite difference-monte carlo method","authors":"Bonnie C. Whitney , Theron M. Rodgers , Anthony G. Spangenberger , Aashique A. Rezwan , David Montes de Oca Zapiain , Diana A. Lados","doi":"10.1016/j.mtla.2024.102279","DOIUrl":"10.1016/j.mtla.2024.102279","url":null,"abstract":"<div><div>Laser powder bed fusion (LPBF) additive manufacturing makes near-net-shaped parts with reduced material cost and time, rising as a promising technology to fabricate Ti-6Al-4 V, a widely used titanium alloy in aerospace and medical industries. However, LPBF Ti-6Al-4 V parts produced with 67° rotation between layers, a scan strategy commonly used to reduce microstructure and property inhomogeneity, have varying grain morphologies and weak crystallographic textures that change depending on processing parameters. This study predicts LPBF Ti-6Al-4 V solidification at three energy levels using a finite difference-Monte Carlo method and validates the simulations with large-area electron backscatter diffraction (EBSD) scans. The developed model accurately shows that a 〈001〉 texture forms at low energy and a 〈111〉 texture occurs at higher energies parallel to the build direction but with a lower strength than the textures observed from EBSD. A validated and well-established method of combining spatial correlation and general spherical harmonics representation of texture is developed to calculate a difference score between simulations and experiments. The quantitative comparison enables effective fine-tuning of nucleation density <span><math><mrow><mo>(</mo><msub><mi>N</mi><mn>0</mn></msub><mo>)</mo></mrow></math></span> input, which shows a nonlinear relationship with increasing energy level. Future improvements in texture prediction code and a more comprehensive study of <span><math><msub><mi>N</mi><mn>0</mn></msub></math></span> with different energy levels will further advance the optimization of LPBF Ti-6Al-4 V components. These developments contribute a novel understanding of crystallographic texture formation in LPBF Ti-6Al-4 V, the development of robust model validation and calibration pipeline methodologies, and provide a platform for mechanical property prediction and process parameter optimization.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102279"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142656569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biomimetic apatites functionalized with antioxidant phytotherapeutics: The case of chlorogenic and sinapic phenolic compounds","authors":"Omar Baklouti , Olivier Marsan , Fabrice Salles , Jalloul Bouajila , Hafed El-Feki , Christophe Drouet","doi":"10.1016/j.mtla.2024.102271","DOIUrl":"10.1016/j.mtla.2024.102271","url":null,"abstract":"<div><div>Synthetic bone-like apatites (i.e. biomimetic apatites) increasingly attract attention in the field of bone substitutes due to their similarity to natural bone mineral and their intrinsic surface reactivity, as opposed to conventional hydroxyapatite. Associations with a range of bioactive species can be a way to further tailor their properties after implantation. In the present work, we have focused on the preparation of hybrid materials combining biomimetic apatites, doped or not with antibacterial Ag<sup>+</sup> ions for added antimicrobial pertinence, and two biophenolic compounds, namely chlorogenic acid (CA) and sinapic acid (SA). Using complementary characterization techniques, especially FTIR and Raman spectroscopies, as well as Monte Carlo computational simulations, we elucidate the possible interaction between such biophenolic molecules and apatite. The follow-up of isotherms of adsorption also pointed out the quantitative sorption of CA and SA onto biomimetic apatites, potentially up to larger extents than reported so far in the literature for apatitic substrates. Finally, antioxidant properties of prepared hybrids were measured via free radical scavenging tests using DPPH as reactant, showing that the studied phytotherapeutic agents retained antioxidant properties after the adsorption process. This work thus evidences that bone-like apatites can be quantitatively associated to biophenolic bioactive agents to further modulate their properties as smart bone substitutes, providing them additional antioxidant features, among others.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"38 ","pages":"Article 102271"},"PeriodicalIF":3.0,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142573447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}