多晶热电材料晶界限制输运的统一迁移率模型

IF 2.9 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Gbadebo Taofeek Yusuf , Sukhwinder Singh , Alexandros Askounis , Zlatka Stoeva , Fideline Tchuenbou-Magaia
{"title":"多晶热电材料晶界限制输运的统一迁移率模型","authors":"Gbadebo Taofeek Yusuf ,&nbsp;Sukhwinder Singh ,&nbsp;Alexandros Askounis ,&nbsp;Zlatka Stoeva ,&nbsp;Fideline Tchuenbou-Magaia","doi":"10.1016/j.mtla.2025.102550","DOIUrl":null,"url":null,"abstract":"<div><div>Grain-boundary-limited charge transport is a fundamental bottleneck in polycrystalline thermoelectric materials, where reduced carrier mobility degrades electrical conductivity and suppresses power factors. This degradation arises from the interplay of scattering mechanisms: grain-boundary barriers dominate at low temperatures; thermionic activation enables partial barrier crossing at intermediate temperatures; and phonon scattering limits the mean free path at high temperatures. Hence, there remains a need for a physically transparent framework to quantitatively extract these microstructural parameters. In this study, a semi-empirical mobility model that explicitly integrates these grain-boundary mechanisms was developed and validated, expressed as: <span><math><mrow><msub><mi>μ</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>μ</mi><mi>w</mi></msub><mtext>exp</mtext><mrow><mo>(</mo><mrow><mo>−</mo><mfrac><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub><mrow><msub><mi>k</mi><mi>B</mi></msub><mi>T</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mfrac><mrow><mi>l</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mrow><mi>l</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>w</mi><mrow><mi>G</mi><mi>B</mi></mrow></msub></mrow></mfrac></mrow></math></span> where <span><math><msub><mi>μ</mi><mi>w</mi></msub></math></span> is the weighted mobility, <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> is the grain‑boundary barrier height, <span><math><msub><mi>k</mi><mi>B</mi></msub></math></span> is Boltzmann’s constant, <span><math><mi>T</mi></math></span> is temperature, <span><math><mrow><mi>l</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></math></span> is the bulk mean free path and <span><math><msub><mi>w</mi><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> is the boundary width. This model was validated for oxide semiconductor, intermetallic, chalcogenide and heuslers polycrystalline materials, achieving excellent agreement with experimental data (<span><math><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></math></span>= 0.97–0.99) and yielding physically consistent parameters: <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> ≈ 0–0.056 eV and <span><math><msub><mi>l</mi><mn>300</mn></msub></math></span> ≈ 6–368 nm. A case study for Ta doped ZnO thermoelectric material shows that barrier passivation (reduction of <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> from 0.056 eV to 0.03 eV) combined with modest grain-interior improvement (<span><math><msub><mi>l</mi><mn>300</mn></msub></math></span>→60 nm) can significantly enhance carrier mobility across the entire temperature range. The analysis predicts that, at ∼1000 K, grain engineering could nearly double mobility and electrical conductivity. Consequently, tailoring microstructural features enable a power factor approximately of 7.64x<span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>W<span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> at 1000 K, compared with the reported value of 4x<span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>W<span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. This framework provides concrete, process-addressable targets for grain-boundary engineering and mobility-driven performance gains.</div></div>","PeriodicalId":47623,"journal":{"name":"Materialia","volume":"44 ","pages":"Article 102550"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified mobility model for grain‑boundary‑limited transport in polycrystalline thermoelectric materials\",\"authors\":\"Gbadebo Taofeek Yusuf ,&nbsp;Sukhwinder Singh ,&nbsp;Alexandros Askounis ,&nbsp;Zlatka Stoeva ,&nbsp;Fideline Tchuenbou-Magaia\",\"doi\":\"10.1016/j.mtla.2025.102550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Grain-boundary-limited charge transport is a fundamental bottleneck in polycrystalline thermoelectric materials, where reduced carrier mobility degrades electrical conductivity and suppresses power factors. This degradation arises from the interplay of scattering mechanisms: grain-boundary barriers dominate at low temperatures; thermionic activation enables partial barrier crossing at intermediate temperatures; and phonon scattering limits the mean free path at high temperatures. Hence, there remains a need for a physically transparent framework to quantitatively extract these microstructural parameters. In this study, a semi-empirical mobility model that explicitly integrates these grain-boundary mechanisms was developed and validated, expressed as: <span><math><mrow><msub><mi>μ</mi><mrow><mi>e</mi><mi>f</mi><mi>f</mi></mrow></msub><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>μ</mi><mi>w</mi></msub><mtext>exp</mtext><mrow><mo>(</mo><mrow><mo>−</mo><mfrac><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub><mrow><msub><mi>k</mi><mi>B</mi></msub><mi>T</mi></mrow></mfrac></mrow><mo>)</mo></mrow><mfrac><mrow><mi>l</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mrow><mi>l</mi><mrow><mo>(</mo><mi>T</mi><mo>)</mo></mrow><mo>+</mo><msub><mi>w</mi><mrow><mi>G</mi><mi>B</mi></mrow></msub></mrow></mfrac></mrow></math></span> where <span><math><msub><mi>μ</mi><mi>w</mi></msub></math></span> is the weighted mobility, <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> is the grain‑boundary barrier height, <span><math><msub><mi>k</mi><mi>B</mi></msub></math></span> is Boltzmann’s constant, <span><math><mi>T</mi></math></span> is temperature, <span><math><mrow><mi>l</mi><mo>(</mo><mi>T</mi><mo>)</mo></mrow></math></span> is the bulk mean free path and <span><math><msub><mi>w</mi><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> is the boundary width. This model was validated for oxide semiconductor, intermetallic, chalcogenide and heuslers polycrystalline materials, achieving excellent agreement with experimental data (<span><math><msup><mrow><mi>R</mi></mrow><mn>2</mn></msup></math></span>= 0.97–0.99) and yielding physically consistent parameters: <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> ≈ 0–0.056 eV and <span><math><msub><mi>l</mi><mn>300</mn></msub></math></span> ≈ 6–368 nm. A case study for Ta doped ZnO thermoelectric material shows that barrier passivation (reduction of <span><math><msub><mstyle><mi>Φ</mi></mstyle><mrow><mi>G</mi><mi>B</mi></mrow></msub></math></span> from 0.056 eV to 0.03 eV) combined with modest grain-interior improvement (<span><math><msub><mi>l</mi><mn>300</mn></msub></math></span>→60 nm) can significantly enhance carrier mobility across the entire temperature range. The analysis predicts that, at ∼1000 K, grain engineering could nearly double mobility and electrical conductivity. Consequently, tailoring microstructural features enable a power factor approximately of 7.64x<span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>W<span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span> at 1000 K, compared with the reported value of 4x<span><math><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup></math></span>W<span><math><mrow><msup><mrow><mi>m</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><msup><mrow><mi>K</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></mrow></math></span>. This framework provides concrete, process-addressable targets for grain-boundary engineering and mobility-driven performance gains.</div></div>\",\"PeriodicalId\":47623,\"journal\":{\"name\":\"Materialia\",\"volume\":\"44 \",\"pages\":\"Article 102550\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materialia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589152925002182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589152925002182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

晶界限制电荷输运是多晶热电材料的基本瓶颈,载流子迁移率降低会降低电导率并抑制功率因数。这种退化是由散射机制的相互作用引起的:晶界屏障在低温下占主导地位;热离子激活可以在中间温度下实现部分势垒穿越;声子散射限制了高温下的平均自由程。因此,仍然需要一个物理透明的框架来定量地提取这些微观结构参数。本文建立并验证了明确集成这些晶界机制的半经验迁移率模型,其表达式为:μeff(T)=μwexp(−ΦGBkBT)l(T)l(T)+wGB,其中μw为加权迁移率,ΦGB为晶界势垒高度,kB为玻尔兹曼常数,T为温度,l(T)为体平均自由程,wGB为晶界宽度。该模型在氧化物半导体、金属间化合物、硫族化物和heuslers多晶材料中得到验证,与实验数据非常吻合(R2= 0.97-0.99),得到的物理参数一致:ΦGB≈0-0.056 eV和l300≈6-368 nm。对Ta掺杂ZnO热电材料的研究表明,势垒钝化(将ΦGB从0.056 eV降低到0.03 eV)结合适度的晶粒内部改进(l300→60 nm)可以显著提高整个温度范围内载流子的迁移率。分析预测,在~ 1000 K下,谷物工程可以使迁移率和导电性几乎翻倍。因此,与报道的4x10−4Wm−1K−2相比,定制的微结构特征使功率因数在1000 K时约为7.64x10−4Wm−1K−2。该框架为晶粒边界工程和机动性驱动的性能提升提供了具体的、过程可寻址的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unified mobility model for grain‑boundary‑limited transport in polycrystalline thermoelectric materials

Unified mobility model for grain‑boundary‑limited transport in polycrystalline thermoelectric materials
Grain-boundary-limited charge transport is a fundamental bottleneck in polycrystalline thermoelectric materials, where reduced carrier mobility degrades electrical conductivity and suppresses power factors. This degradation arises from the interplay of scattering mechanisms: grain-boundary barriers dominate at low temperatures; thermionic activation enables partial barrier crossing at intermediate temperatures; and phonon scattering limits the mean free path at high temperatures. Hence, there remains a need for a physically transparent framework to quantitatively extract these microstructural parameters. In this study, a semi-empirical mobility model that explicitly integrates these grain-boundary mechanisms was developed and validated, expressed as: μeff(T)=μwexp(ΦGBkBT)l(T)l(T)+wGB where μw is the weighted mobility, ΦGB is the grain‑boundary barrier height, kB is Boltzmann’s constant, T is temperature, l(T) is the bulk mean free path and wGB is the boundary width. This model was validated for oxide semiconductor, intermetallic, chalcogenide and heuslers polycrystalline materials, achieving excellent agreement with experimental data (R2= 0.97–0.99) and yielding physically consistent parameters: ΦGB ≈ 0–0.056 eV and l300 ≈ 6–368 nm. A case study for Ta doped ZnO thermoelectric material shows that barrier passivation (reduction of ΦGB from 0.056 eV to 0.03 eV) combined with modest grain-interior improvement (l300→60 nm) can significantly enhance carrier mobility across the entire temperature range. The analysis predicts that, at ∼1000 K, grain engineering could nearly double mobility and electrical conductivity. Consequently, tailoring microstructural features enable a power factor approximately of 7.64x104Wm1K2 at 1000 K, compared with the reported value of 4x104Wm1K2. This framework provides concrete, process-addressable targets for grain-boundary engineering and mobility-driven performance gains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materialia
Materialia MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.40
自引率
2.90%
发文量
345
审稿时长
36 days
期刊介绍: Materialia is a multidisciplinary journal of materials science and engineering that publishes original peer-reviewed research articles. Articles in Materialia advance the understanding of the relationship between processing, structure, property, and function of materials. Materialia publishes full-length research articles, review articles, and letters (short communications). In addition to receiving direct submissions, Materialia also accepts transfers from Acta Materialia, Inc. partner journals. Materialia offers authors the choice to publish on an open access model (with author fee), or on a subscription model (with no author fee).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信