Analytic Methods in Accident Research最新文献

筛选
英文 中文
An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches 昼夜骑自行车者在车辆/自行车碰撞中受伤严重程度的分析:无约束和部分约束时间建模方法的比较
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-09 DOI: 10.1016/j.amar.2023.100301
Nawaf Alnawmasi , Fred Mannering
{"title":"An analysis of day and night bicyclist injury severities in vehicle/bicycle crashes: A comparison of unconstrained and partially constrained temporal modeling approaches","authors":"Nawaf Alnawmasi ,&nbsp;Fred Mannering","doi":"10.1016/j.amar.2023.100301","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100301","url":null,"abstract":"<div><p>Due to visibility limitations and other factors, the injuries sustained by bicyclists in nighttime vehicle-bicycle crashes tend to be more severe than daytime crashes. This paper seeks to provide insights into this day/night injury severity phenomenon by studying how day/night bicyclist injury severities have changed in crashes that occurred before, during, and after the COVID-19 lock downs. Using data from vehicle-bicycle crashes in the state of Florida over a three-year period (from 2019 to 2021 inclusive), separate yearly models of bicyclist-injury severities (with possible outcomes of severe injury, minor injury, and no visible injury) were estimated using a random parameters logit approach with possible heterogeneity in the means and variances of random parameters. Likelihood ratio tests were conducted to examine the overall stability of model estimates across the studied years as well as day/night differences, and a comparison of partially constrained and unconstrained temporal modeling approaches was undertaken. A wide range of variables potentially affecting resulting bicyclist injury severities in vehicle/bicycle crashes was considered including bicyclist and vehicle driver information, vehicle features, roadways and environmental conditions, temporal characteristics, and roadway features. The findings show statistically significant injury-severity differences between daytime and nighttime before, during and after the COVID-19 pandemic. Out-of-sample simulation results suggest that improving the visibility of bicyclist through mandated reflectivity, improved roadway illumination, undertaking public awareness campaigns relating to nighttime bicyclist safety, and vulnerable road user detection sensors in vehicles can all contribute to substantially improving nighttime bicyclist safety.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100301"},"PeriodicalIF":12.9,"publicationDate":"2023-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49729326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Effects of design consistency measures and roadside hazard types on run-off-road crash severity: Application of random parameters hierarchical ordered probit model 设计一致性措施和路边危险类型对失控道路碰撞严重程度的影响:随机参数层次有序Probit模型的应用
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-06 DOI: 10.1016/j.amar.2023.100300
Shinthia Azmeri Khan , Shamsunnahar Yasmin , Md Mazharul Haque
{"title":"Effects of design consistency measures and roadside hazard types on run-off-road crash severity: Application of random parameters hierarchical ordered probit model","authors":"Shinthia Azmeri Khan ,&nbsp;Shamsunnahar Yasmin ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2023.100300","DOIUrl":"10.1016/j.amar.2023.100300","url":null,"abstract":"<div><p>Run-off-road crashes are one of the most significant causes of road deaths worldwide. Given such significant safety concerns, a number of earlier studies examined the critical factors contributing towards run-off-road crash severity outcomes, mostly by using the information compiled in the official crash database. However, the official crash databases are less likely to have detailed information on driver behavior (errors/expectations) and roadway environment (roadway geometry and roadside attributes). This study aims to investigate the effects of design consistency measures on run-off-road crash severity mechanisms by applying a random parameters hierarchical ordered Probit model. This study contributes towards existing safety literature by demonstrating a complementary approach to capturing the effects of driver behavior and heterogeneity in roadway environment on run-off-road crash severity outcome through the composite measures of design consistency indices and cosmopolite measures of roadside hazard type variables. Specifically, 17 different functional forms of design consistency indices are developed to capture the behavioral factors from the road-geometric changes in developing run-off-road crash severity models. Further, in examining the effect of different types of the roadside environment on run-off-road crash severity outcomes, seven roadside hazard type variables are generated as a composite function of roadside object type and clear zone (lateral distance to roadside object). The empirical analysis of this study involves a two-step modelling approach - in the first step, the decision tree algorithm is applied to identify the higher-order interaction among independent variables, and in the second step, crash severity models are developed by employing several econometric approaches. The hybrid models are estimated by employing four econometric frameworks, which include Ordered Probit, Hierarchical Ordered Probit, Random Parameters Ordered Probit, and Random parameters Hierarchical Ordered Probit models. The run-off-road crash severity models are estimated by using crash data collected from the State of Queensland, Australia, for the years 2015 through 2019. Overall, this study reveals the importance of considering the interaction of drivers' behavior, road geometry, and roadside attributes along with other independent variables in developing run-off-road crash severity models.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100300"},"PeriodicalIF":12.9,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47266949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traffic conflict prediction using connected vehicle data 基于互联车辆数据的交通冲突预测
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100275
Zubayer Islam, Mohamed Abdel-Aty
{"title":"Traffic conflict prediction using connected vehicle data","authors":"Zubayer Islam,&nbsp;Mohamed Abdel-Aty","doi":"10.1016/j.amar.2023.100275","DOIUrl":"10.1016/j.amar.2023.100275","url":null,"abstract":"<div><p><span>Transportation safety studies have been mostly focused on using crash data that are rare events. Alternatively, conflict estimation can be used to assess safety. This has been proven as a proactive design methodology that does not rely on crashes and requires shorter observation. Traditionally, the safety studies involving both these reactive and proactive methods were based on aggregated data that does not take individual vehicle dynamics into consideration. This paper addresses this research gap by proposing a novel real-time conflict prediction methodology that uses previous instance trajectory data of individual vehicles to understand whether there can be potential conflict in the near future. A long-short term memory (LSTM) model is developed that can apprehend a conflict situation 9 s in the future. Data from connected vehicles have been used. The proposed model returned a recall of 81% with a false alarm rate of 28%. The predictive model has the potential to be implemented on vehicle dashboards to warn drivers of a conflict. The authors have also used SHAP (SHapley Additive exPlanation) to interpret the results from the LSTM model. It was deduced that acceleration above 0.3 m/s</span><sup>2</sup>, deceleration within −1.5 m/s<sup>2</sup> to −0.25 m/s<sup>2</sup>, and speed of more than 40kph were responsible for inducing a conflict.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100275"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43029864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Identification of adequate sample size for conflict-based crash risk evaluation: An investigation using Bayesian hierarchical extreme value theory models 为基于冲突的碰撞风险评估确定足够的样本量:使用贝叶斯层次极值理论模型的调查
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100281
Chuanyun Fu , Tarek Sayed
{"title":"Identification of adequate sample size for conflict-based crash risk evaluation: An investigation using Bayesian hierarchical extreme value theory models","authors":"Chuanyun Fu ,&nbsp;Tarek Sayed","doi":"10.1016/j.amar.2023.100281","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100281","url":null,"abstract":"<div><p>The use of traffic conflict-based models to estimate crash risk and evaluate the safety of road locations is a popular direction for road safety analysis. However, a challenging issue of traffic conflict-based crash risk modeling is the selection of an appropriate sample size. Reliable conflict-based crash risk models typically require a large sample size which is always very difficult to collect. Further, when choosing a sample size, the bias-variance trade-off of model estimation is a constant concern. This study proposes an approach for identifying an adequate sample size for conflict-based crash risk estimation models. The appropriate sample size is determined by checking the model convergence and its goodness-of-fit. A quantitative approach for objectively testing the model goodness-of-fit is developed. Both the trace plots and the variation tendencies of Brooks-Gelman-Rubin statistics of parameter simulation chains are examined to inspect the model convergence. A graphical method is also used to check the model goodness of fit. If the model has not converged or fits poorly, then additional samples are required. The proposed method was applied to identify the adequate sample size for a Bayesian hierarchical extreme value theory (EVT) block maxima (BM) model using traffic conflict data from four signalized intersections in the city of Surrey, British Columbia. The indicator, modified time to collision (MTTC), was used to delineate traffic conflicts. A series of stationary and non-stationary Bayesian hierarchical BM models were developed using the cycle-level maximums of negated MTTC. The adequate sample sizes of stationary and non-stationary Bayesian hierarchical BM models were determined separately. Further, two methods of increasing the sample size (i.e., extending the observation period and combining data from different sites) were compared in terms of goodness-of-fit as well as crash estimate accuracy and precision. The results show that for both stationary and non-stationary models, the sample size used is adequate for model convergence and goodness-of-fit. Moreover, adding covariates to the stationary Bayesian hierarchical BM model does not affect the size of the required sample. Extending the observation period outperforms combining data from different sites in terms of goodness-of-fit as well as crash estimation accuracy and precision of non-stationary models. This is likely related to the existence of unmeasured factors that could impair model estimation and inference when merging data from several sites to augment the number of samples. Overall, the findings of this study can be applied to examine whether available data is adequate and the amount of additional data required for producing reliable statistical inference.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100281"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49760786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-time safest route identification: Examining the trade-off between safest and fastest routes 实时最安全路线识别:检查最安全路线和最快路线之间的权衡
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100277
Tarek Ghoul , Tarek Sayed , Chuanyun Fu
{"title":"Real-time safest route identification: Examining the trade-off between safest and fastest routes","authors":"Tarek Ghoul ,&nbsp;Tarek Sayed ,&nbsp;Chuanyun Fu","doi":"10.1016/j.amar.2023.100277","DOIUrl":"10.1016/j.amar.2023.100277","url":null,"abstract":"<div><p>Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100277"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44166443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Temporal stability of the impact of factors determining drivers’ injury severities across traffic barrier crashes in mountainous regions 山区跨栏交通事故驾驶员伤害严重程度影响因素的时间稳定性
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100282
Dongdong Song , Xiaobao Yang , Panagiotis Ch. Anastasopoulos , Xingshui Zu , Xianfei Yue , Yitao Yang
{"title":"Temporal stability of the impact of factors determining drivers’ injury severities across traffic barrier crashes in mountainous regions","authors":"Dongdong Song ,&nbsp;Xiaobao Yang ,&nbsp;Panagiotis Ch. Anastasopoulos ,&nbsp;Xingshui Zu ,&nbsp;Xianfei Yue ,&nbsp;Yitao Yang","doi":"10.1016/j.amar.2023.100282","DOIUrl":"10.1016/j.amar.2023.100282","url":null,"abstract":"&lt;div&gt;&lt;p&gt;Traffic barrier crashes have been a major concern in many prior studies in traffic safety literature, especially in the crash-prone sections of mountainous regions. However, the effect of factors affecting the injury-severities resulting from crashes involving different types of traffic barriers may be different. This paper provides an empirical assessment of the performance of ordered and unordered discrete outcome models for examining the impact of exogenous factors determining the driver injury-severity of crashes involving two types of traffic barriers in mountainous regions: w-beam barriers and cable barriers. For the ordered framework, the alternative modeling approaches include: the generalized ordered logit (GOL) and the random thresholds random parameters generalized ordered logit model (RTRPGOL). Whereas, for the unordered framework, the alternative modeling approaches include: the multinomial logit (MNL), the random parameters multinormal logit (RPL), and the random parameters multinormal logit model with heterogeneity in the means and variances (RPLHMV). Using injury-severity data from 2016 to 2019 for mountainous regions in Guiyang City, China, three injury-severity categories are determined as outcome variables: severe injury (SI), minor injury (MI), and no injury (NI), while the potential influencing factors including drivers-, vehicles-, road-, and environment-specific characteristics are statistically analyzed. The model estimation results show: (a) that the MNL model statistically outperforms the GOL model in terms of goodness-of-fit measures; (b) the RTRPGOL model is statistically superior to the MNL and RPL models; and (c) the RPLHMV model is statistically superior to the RTRPGOL model, and therefore the preferred option among the model alternatives. To that end, the RPLHMV model is leveraged to quantitatively describe the impact of explanatory variables on the driver injury-severity and explore how these factors change over the years (between 2016–2017 and 2018–2019). The results further show that the factors affecting driver injury severities and the effects of significant factors on injury severity probabilities change across traffic barrier crash models and across years. In addition, the results of the temporal effects analysis show that some variables present relative temporal stability, which is important for formulating long-term strategies to enhance traffic safety on mountainous roads. Most importantly, the effects of the explanatory factors that exhibit relative temporal stability are found to vary across traffic barrier crashes. For example, trucks, daylight, curved section segments, and high-speed limit (greater than 55 mph) are some of the factors that have opposite effects between traffic barrier crash models. The findings from this paper are expected to help policy makers to take necessary measures in reducing traffic barrier crashes in mountainous regions by forming appropriate strategies, and by alloca","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100282"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47517258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Modelling the response times of mobile phone distracted young drivers: A hybrid approach of decision tree and random parameters duration model 基于决策树和随机参数持续时间模型的青年司机手机分心反应时间建模
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100279
Yasir Ali , Md Mazharul Haque
{"title":"Modelling the response times of mobile phone distracted young drivers: A hybrid approach of decision tree and random parameters duration model","authors":"Yasir Ali ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2023.100279","DOIUrl":"https://doi.org/10.1016/j.amar.2023.100279","url":null,"abstract":"<div><p>Research has shown the detrimental effects of using mobile phones whilst driving, which are more prominent and concerning for young drivers, who are often less experienced and riskier. As such, this study investigates young drivers’ response times when they encounter a safety–critical event on a suburban road whilst using a mobile phone. To collect high-quality trajectory data, the CARRS-Q advanced driving simulator was used. Thirty-two licenced young drivers were exposed to the sudden braking of the lead vehicle in their lane in three driving conditions: baseline (no phone conversation), handheld, and hands-free. Unlike extant studies, this paper proposes a hybrid modelling framework for the response times of distracted drivers. This framework combines a decision tree model and a correlated grouped random parameters duration model with heterogeneity-in-means. While the decision tree model identifies a <em>priori</em> relationship among main effects, the random parameter model captures unobserved heterogeneity and correlation between random parameters. The modelling results reveal that mobile phone distraction impairs response time behaviour for the majority of drivers. However, some drivers tend to respond earlier whilst being distracted, suggesting that the perceived risk of mobile use might have led to an early response, indicating their risk compensation behaviour. Female drivers tend to respond earlier compared to male drivers, indicating their safer and risk-averse behaviour. Overall, mobile phone distraction appears to deteriorate response time behaviour and poses a significant safety concern to drivers and the overall traffic stream unless mitigated.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100279"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49713228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An econometric framework for integrating aggregate and disaggregate level crash analysis 整合聚合与非聚合水平碰撞分析的计量经济学框架
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100280
Shahrior Pervaz, Tanmoy Bhowmik, Naveen Eluru
{"title":"An econometric framework for integrating aggregate and disaggregate level crash analysis","authors":"Shahrior Pervaz,&nbsp;Tanmoy Bhowmik,&nbsp;Naveen Eluru","doi":"10.1016/j.amar.2023.100280","DOIUrl":"10.1016/j.amar.2023.100280","url":null,"abstract":"<div><p>Traditionally, aggregate crash frequency by severity and disaggregate severity analysis have been conducted independently in the safety literature. The current research effort contributes to the safety literature by bridging the gap between these two different streams of research by using both aggregate and disaggregate level crash data simultaneously. To be specific, the study proposes a framework that integrates aggregate and disaggregate level models. The proposed framework allows for the influence of independent variables at the crash record level to be incorporated within the aggregate level propensity estimation. The empirical analysis is based on the crash data drawn from the city of Orlando, Florida for the year 2019. The disaggregate level analysis uses 20,204 crash records that contain crash specific variables, temporal characteristics, roadway, vehicle and driver factors, road environmental and weather information for each record. For aggregate level model analysis, the study aggregated the crash records by severity class over 300 traffic analysis zones. An exhaustive set of independent variables including roadway and traffic factors, land-use attributes, built environment, and sociodemographic characteristics are considered in this analysis. The empirical analysis is further augmented by employing several goodness of fit and predictive measures. A validation exercise is also performed using a holdout sample to highlight the superior performance of the proposed integrated model relative to the non-integrated crash count by severity model. The proposed model can also accommodate common unobserved spatial correlation among crash records within the same zone. The model results illustrate the benefits of developing an integrated model system for crash frequency and severity.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100280"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45453650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing traffic conflict/crash relationships with extreme value theory: Recent developments and future directions for connected and autonomous vehicle and highway safety research 用极值理论评估交通冲突/碰撞关系:联网和自动驾驶汽车和公路安全研究的最新发展和未来方向
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100276
Yasir Ali , Md Mazharul Haque , Fred Mannering
{"title":"Assessing traffic conflict/crash relationships with extreme value theory: Recent developments and future directions for connected and autonomous vehicle and highway safety research","authors":"Yasir Ali ,&nbsp;Md Mazharul Haque ,&nbsp;Fred Mannering","doi":"10.1016/j.amar.2023.100276","DOIUrl":"10.1016/j.amar.2023.100276","url":null,"abstract":"<div><p>With proactive safety assessment gaining significant attention in the literature, the relationship between traffic conflicts (which form the underpinnings of proactive safety measures) and observed crashes remains a critical research need. Such a need will grow significantly with the ongoing introduction of connected and autonomous vehicles where software and hardware improvements are likely to be determined from observed traffic conflict data as opposed to data from accumulated crashes. Extreme value theory has been applied for over two decades to study the relationship between traffic conflicts and crashes. While several advancements have been made in extreme value theory models over time, the need to continually evaluate the strengths and weaknesses of these models remains, particularly considering their likely use in improving the safety–critical elements of connected and autonomous vehicles. This paper seeks to comprehensively review studies on extreme value theory applications in traffic conflict/crash contexts by providing an in-depth assessment of alternate modelling methodologies and associated issues. Critical research needs relating to the further development of extreme value theory models are identified and include identifying efficient techniques for sampling extremes, determining optimal sample size, assessing and selecting appropriate traffic conflict measures, incorporating covariates, accounting for unobserved heterogeneity, and addressing issues associated with real-time estimations.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100276"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41582796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Car-following crash risk analysis in a connected environment: A Bayesian non-stationary generalised extreme value model 互联环境下的跟车碰撞风险分析:一个贝叶斯非平稳广义极值模型
IF 12.9 1区 工程技术
Analytic Methods in Accident Research Pub Date : 2023-09-01 DOI: 10.1016/j.amar.2023.100278
Faizan Nazir , Yasir Ali , Anshuman Sharma , Zuduo Zheng , Md Mazharul Haque
{"title":"Car-following crash risk analysis in a connected environment: A Bayesian non-stationary generalised extreme value model","authors":"Faizan Nazir ,&nbsp;Yasir Ali ,&nbsp;Anshuman Sharma ,&nbsp;Zuduo Zheng ,&nbsp;Md Mazharul Haque","doi":"10.1016/j.amar.2023.100278","DOIUrl":"10.1016/j.amar.2023.100278","url":null,"abstract":"<div><p>A connected environment provides driving aids to assist drivers in decision-making and aims to make driving manoeuvres safer by minimising uncertainty associated with decisions. The role of a connected environment becomes vital for car-following manoeuvres in a safety–critical event, whereby drivers follow a lead vehicle, and if timely action is not taken, it is likely to lead to a rear-end collision. Moreover, how different drivers perceive and react to the same information needs to be explored to understand the differential effects of a connected environment on car-following behaviour. As such, this study investigated the effects of the traditional and connected environments on car-following crash risk using traffic conflict techniques. Data were collected using the CARRS-Q advanced driving simulator, whereby 78 participants performed a car-following task in two randomised driving conditions: baseline (without driving aids) and connected environment (with driving aids). The safety–critical event in the car-following scenario was the leader’s hard braking, for which participants received advance information, besides several other driving aids. Modified time-to-collision was used as the traffic conflict measure for characterising rear-end crash risk and modelled using a generalised extreme value (GEV) model in the Bayesian framework. This model incorporated driving-related factors and driver demographics to address the non-stationarity issue of traffic extremes. Results reveal that the car-following crash risk is significantly reduced in the connected environment. Further, using the developed model, separate GEV distributions were estimated for each individual driver, providing insights into the heterogeneous effects of the connected environment on crash risk. The developed model was employed to understand the crash risk across different driver characteristics, and results suggest that crash risk decreases for all age groups and gender, with the maximum safety benefits obtained by young and female drivers. The findings of this study shed light on the efficacy of the connected environment in improving car-following behaviour and drivers’ ability to make safer decisions.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100278"},"PeriodicalIF":12.9,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46584217","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信