实时最安全路线识别:检查最安全路线和最快路线之间的权衡

IF 12.5 1区 工程技术 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Tarek Ghoul , Tarek Sayed , Chuanyun Fu
{"title":"实时最安全路线识别:检查最安全路线和最快路线之间的权衡","authors":"Tarek Ghoul ,&nbsp;Tarek Sayed ,&nbsp;Chuanyun Fu","doi":"10.1016/j.amar.2023.100277","DOIUrl":null,"url":null,"abstract":"<div><p>Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"39 ","pages":"Article 100277"},"PeriodicalIF":12.5000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Real-time safest route identification: Examining the trade-off between safest and fastest routes\",\"authors\":\"Tarek Ghoul ,&nbsp;Tarek Sayed ,&nbsp;Chuanyun Fu\",\"doi\":\"10.1016/j.amar.2023.100277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.</p></div>\",\"PeriodicalId\":47520,\"journal\":{\"name\":\"Analytic Methods in Accident Research\",\"volume\":\"39 \",\"pages\":\"Article 100277\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytic Methods in Accident Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221366572300012X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221366572300012X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 3

摘要

几项研究表明,坠机风险是一个动态量,它经常随着相当大的空间和时间变化而变化。安全评估技术的最新进展,如使用极值理论(EVT)模型,提供了利用从道路使用者轨迹获得的交通冲突数据来估计实时安全指标的机会。这些指标可以根据暴露在不安全道路条件下的持续时间,汇总特定路线上的碰撞风险。本文将贝叶斯层次极值理论模型应用于从希腊雅典的无人机数据集获得的轨迹,以开发一种能够实时通知用户城市网络中最安全路线的最安全路线算法。选定的研究区域由102个有信号和无信号交叉口组成的矩形网格组成。获取网络中每条链路的动态崩溃风险,并利用该风险来确定任何始末对之间的最安全路由和相应的最快路由。然后将最安全的路线与最快的路线进行比较,发现平均安全22%,导致旅行时间增加11%。此外,在分析的23%的出发地对中,最安全的路线与最快的路线相同,在链接方面平均相似度为54%。考虑到安全性和机动性之间的权衡,提出了一种多目标路由方法,该方法使用安全加权偏好来平衡旅行时间和碰撞风险。这项工作在提高所有道路使用者的安全方面具有相当大的潜力,也可用于车队路由应用,作为多目标路由系统的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time safest route identification: Examining the trade-off between safest and fastest routes

Several studies have shown that crash risk is a dynamic quantity that is frequently changing with considerable spatial and temporal variations. Recent advances in safety evaluation techniques such as using extreme value theory (EVT) models provided the opportunity to use traffic conflict data obtained from road user trajectories to estimate real time safety metrics. These metrics can aggregate crash risk along a certain route based on the duration of exposure to unsafe road conditions. This paper applies a Bayesian hierarchal extreme value theory model to trajectories obtained from a drone dataset from Athens, Greece, to develop a safest route algorithm capable of informing users about the safest route in an urban network in real time. The study area selected consists of a rectangular grid made up of 102 signalized and unsignalized intersections. The dynamic crash risk for each link in the network was obtained and used to identify the safest route between any origin–destination pair and the corresponding fastest route. The safest routes were then compared to the fastest routes and were found to be 22% safer on average, resulting in an 11% increased travel time. Moreover, the safest route was identical to the fastest route in 23% of the origin–destination pairs analyzed and had an average similarity of 54% in terms of links. Recognizing the trade-off between safety and mobility, a multi-objective routing methodology was proposed which balances travel time and crash risk using a weighted preference for safety. This work has considerable potential for improving the safety of all road users and may also be used for fleet routing applications as part of multi-objective routing systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.10
自引率
34.10%
发文量
35
审稿时长
24 days
期刊介绍: Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信