{"title":"Dynamic Bayesian hierarchical peak over threshold modeling for real-time crash-risk estimation from conflict extremes","authors":"Chuanyun Fu , Tarek Sayed","doi":"10.1016/j.amar.2023.100304","DOIUrl":null,"url":null,"abstract":"<div><p>Using traffic conflict-based extreme value theory (EVT) models to quantify real-time crash-risk of road facilities is a promising direction for developing proactive traffic safety management strategies. Existing EVT real-time crash-risk analysis studies have only focused on using block maxima models. This study proposes a dynamic Bayesian hierarchical peak over threshold modeling approach to estimate real-time crash-risk based on traffic conflicts. The proposed approach combines quantile regression, dynamic updating approach, Bayesian hierarchical structure, and the peak over threshold method to generate time-varying generalized Pareto distributions to derive real-time crash-risk measures (i.e., crash probability and return level). The derived real-time crash-risk measures are applied to estimate cycle-level crash-risk at three signalized intersections in Surrey, British Columbia. Five approaches are used to dynamically update the model parameters, including time trend model, generalized autoregressive conditional heteroskedasticity process approach, as well as the first-order, second-order, and third-order dynamic linear models. For comparison, static models are also developed. All the developed models are compared in terms of statistical fit and predictive performance. Based on the best fitted dynamic model, cycle-level crash probability and return level are calculated to measure signalized intersection safety at cycle level. The results show that dynamic models considerably outperform static models in terms of statistical fit and predictive performance. Further, the third-order dynamic model has the best performance, which is probably due to that the model incorporates two linear trends to respectively describe the variation of the coefficients as well as its change to better account for the variation in the effect of time-varying covariates. However, it should be noted that the third-order dynamic model development needs more computation time than other dynamic models, which may limit the application of the model.</p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100304"},"PeriodicalIF":12.5000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665723000398","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 2
Abstract
Using traffic conflict-based extreme value theory (EVT) models to quantify real-time crash-risk of road facilities is a promising direction for developing proactive traffic safety management strategies. Existing EVT real-time crash-risk analysis studies have only focused on using block maxima models. This study proposes a dynamic Bayesian hierarchical peak over threshold modeling approach to estimate real-time crash-risk based on traffic conflicts. The proposed approach combines quantile regression, dynamic updating approach, Bayesian hierarchical structure, and the peak over threshold method to generate time-varying generalized Pareto distributions to derive real-time crash-risk measures (i.e., crash probability and return level). The derived real-time crash-risk measures are applied to estimate cycle-level crash-risk at three signalized intersections in Surrey, British Columbia. Five approaches are used to dynamically update the model parameters, including time trend model, generalized autoregressive conditional heteroskedasticity process approach, as well as the first-order, second-order, and third-order dynamic linear models. For comparison, static models are also developed. All the developed models are compared in terms of statistical fit and predictive performance. Based on the best fitted dynamic model, cycle-level crash probability and return level are calculated to measure signalized intersection safety at cycle level. The results show that dynamic models considerably outperform static models in terms of statistical fit and predictive performance. Further, the third-order dynamic model has the best performance, which is probably due to that the model incorporates two linear trends to respectively describe the variation of the coefficients as well as its change to better account for the variation in the effect of time-varying covariates. However, it should be noted that the third-order dynamic model development needs more computation time than other dynamic models, which may limit the application of the model.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.