Georgina C. Laredo, Ricardo Águeda-Rangel, Alfonso García-López, José Luis García-Gutiérrez, Eli Hazel Olmos-Cerda
{"title":"Effect of the chemical composition of six hydrotreated light cycle oils for benzene, toluene, ethylbenzene, and xylene production by a hydrocracking process","authors":"Georgina C. Laredo, Ricardo Águeda-Rangel, Alfonso García-López, José Luis García-Gutiérrez, Eli Hazel Olmos-Cerda","doi":"10.1007/s13203-021-00276-w","DOIUrl":"10.1007/s13203-021-00276-w","url":null,"abstract":"<div><p>The effect of the chemical composition of the hydrotreated light cycle oil (HDT LCO) on the benzene, toluene, ethylbenzene, and xylene (BTEX) production by a hydrocracking (HCK) procedure, is presented. Six different types of HDT LCOs were obtained by submitting two types of LCOs to hydrotreating (HDT) with different catalysts and experimental conditions. The products were analyzed as mono-, di- and tri-aromatic compounds using the supercritical fluid chromatography (SFC) method (ASTM D5186). The HDT LCOs were subjected to HCK with a 50/50 in weight mixture of nickel-molybdenum on alumina (NiMo/Al<sub>2</sub>O<sub>3</sub>) and H-ZSM5 (NiMo/H-ZSM5, 50/50) at 375 °C, 7.5 MPa, 1.2 h<sup>−1</sup>, and 750 m<sup>3</sup>/m<sup>3</sup> H<sub>2</sub>/Oil. The HCK products were analyzed by gas chromatography with a flame ionization detector (GC-FID) and divided into five groups: gas, light hydrocarbons (LHCs), BTEX, middle hydrocarbons (MHCs), and heavy hydrocarbons (HHCs).</p><p>The results showed that the BTEX formation ranged from 27.0 to 29.8 wt.% and it did not show a significant dependence on the mono-aromatic (59.9 and 75.6 wt.%), total aromatic (61.1–84.2 wt.%) contents or MHCs conversion (58.3–64.3 wt.%) from the departing HDT LCO feedstock. This result implies that, contrary to previous expectations, the BTEX formation does not directly depend on the amounts of total or mono-aromatic compounds when departing from real feedstocks. A GC-PIONA (paraffin, isoparaffin, olefin, naphthene, aromatic) characterization method (ASTM D6623) for mechanism understanding purpose was also carried out.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"249 - 263"},"PeriodicalIF":0.125,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00276-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4128602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Themba E. Tshabalala, Neil J. Coville, James A. Anderson, Michael S. Scurrell
{"title":"Dehydroaromatization of methane over noble metal loaded Mo/H-ZSM-5 zeolite catalysts","authors":"Themba E. Tshabalala, Neil J. Coville, James A. Anderson, Michael S. Scurrell","doi":"10.1007/s13203-021-00274-y","DOIUrl":"10.1007/s13203-021-00274-y","url":null,"abstract":"<div><p>Dehydroaromatization of methane (MDA) reaction was investigated over platinum modified Mo/H-ZSM-5 catalysts which were pre-carbided at 750 °C. The influence of platinum on the catalytic performance and product selectivity of Mo/H-ZSM-5 catalysts for the MDA reaction at 700 °C were studied. The presence of platinum led to a slight decrease in methane conversion from 7.5 to 4.2%. Aromatic selectivities above 90% were obtained with catalysts containing low platinum loadings (0.5 and 1.0 wt.%), with benzene being the most prominent product. A decrease in coke selectivity and coke deposits was noted with the platinum modified Mo/H-ZSM-5 zeolite catalysts. A comparative study was performed to compare platinum, palladium and ruthenium promoted Mo/H-ZSM-5 zeolite catalysts with un-promoted Mo/H-ZSM-5. The ruthenium promoted catalyst proved to be superior in catalytic performance, with a higher methane conversion obtained than that found for platinum promoted and palladium promoted Mo/H-ZSM-5 catalysts. Benzene selectivity of about 60% was obtained for ruthenium and palladium promoted Mo/H- ZSM-5 catalysts and the total aromatic selectivity was maintained at 90%. TGA results showed a total reduction of 50% by weight of carbon deposited on the promoted Mo/H-ZSM-5 catalyst.</p><h3>Graphic abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"235 - 248"},"PeriodicalIF":0.125,"publicationDate":"2021-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00274-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4134851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of triethanolamine-cashew nutshell liquid derivatives as crude oil emulsion breakers","authors":"C. O. Victor-Oji, U. J. Chukwu, O. Akaranta","doi":"10.1007/s13203-021-00273-z","DOIUrl":"10.1007/s13203-021-00273-z","url":null,"abstract":"<div><p>Three bio-based crude oil emulsion breakers have been prepared from agricultural waste by chemical treatment of cashew nutshell liquid (CNSL) extract with triethanolamine via a one-pot reaction at 120 ℃. The triethanolamine-ester derivatives were characterized by Fourier Transform–InfraRed spectroscopy. Their effectiveness as crude oil emulsion breakers were investigated experimentally using the bottle test method. The effect of solvent type, water content, and concentration of the emulsion breaker, was used to study the demulsification process and determine their demulsification efficiency at a temperature of 60 ℃ for a contact time of 180 min. A commercial demulsifier, PhaseTreat 4633 (PT-4633) was used as a benchmark. Performance evaluation of the prepared emulsion breakers revealed their effectiveness in descending order as: triethanolamine dianacardate (TED) > triethanolamine trianacardate (TET) > triethanolamine anacardate (TEA). The data reveals that their emulsion breaking efficiency increases with increasing emulsion water content, and concentration. PT-4633 exhibited better demulsification efficiency than the triethanolamine-esters in xylene across the concentration and water content studied. Improved water separation was however observed for the triethanolamine-esters in butanol, as triethanolamine trianacardate (TET) performed better than PT-4633 at 10 ppm to 20 ppm at 30% water content with a water separation of 83.33% and 80% respectively. The evaluated triethanolamine ester derivatives exhibited better emulsion breaking potentials in butanol than xylene at shorter times, which may be due to the synergistic effect of butanol. Therefore, butanol could be used as a sustainable solvent substitute for xylene in demulsifier formulations.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"209 - 233"},"PeriodicalIF":0.125,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00273-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4285811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A meta-analysis of multi-factors leading to performance challenges across Nigeria’s state-owned refineries","authors":"Obinna Iheukwumere, David Moore, Temitope Omotayo","doi":"10.1007/s13203-021-00272-0","DOIUrl":"10.1007/s13203-021-00272-0","url":null,"abstract":"<div><p>This paper measured the significant factors leading to performance challenges across state-owned refineries in Nigeria based on experts’ views. The study was carried out with a view of making policy recommendations to help address these issues and thereby improve performance. A quantitative approach was adopted to sample the viewpoints of the professionals who work across the NNPC refineries. Using a Likert-type questionnaire, the professionals’ expert opinions were ranked across four main categories covering political, economic, social, and technical (PEST) factors. A Cronbach alpha test was performed to certify the consistency and reliability of the sub-category factors included on the Likert scale. In addition, a multivariate analysis of variance (MANOVA) was carried out to check for any statistically significant differences in the respondents’ opinions as a result of their different years of work experience. The study revealed that while all four PEST factors are crucial to the performance of the state-owned refineries in Nigeria, political, economic, and technical factors were viewed as more significant than the social factors. A comparative analysis of the sub-category factors using the relative significance index (RSI) and the respondents’ mean scores of importance (RMSI) revealed that government interference, funding issues, political indecision, theft and pipeline attacks, cost of spare parts, maintenance issues, operating capital, feedstock supply, staff training and competence issues are some of the significant factors that affect the performance of the refineries. The identified performance challenges from this study were used to inform policy recommendations to help address the problems of the refineries.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"183 - 197"},"PeriodicalIF":0.125,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00272-0","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5420290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed Awwalu Usman, Olumide Kayode Fagoroye, Toluwalase Olufunmilayo Ajayi, Abiola John Kehinde
{"title":"Binary mixtures of choline chloride-based deep eutectic solvents as green extractants for the extraction of benzene from n-hexane","authors":"Mohammed Awwalu Usman, Olumide Kayode Fagoroye, Toluwalase Olufunmilayo Ajayi, Abiola John Kehinde","doi":"10.1007/s13203-021-00270-2","DOIUrl":"10.1007/s13203-021-00270-2","url":null,"abstract":"<div><p>A suitable green solvent for extraction of aromatics from aliphatics must possess good solvation and physicochemical properties, a rare occurrence in a single deep eutectic solvent (DES). Mixture of DESs could enable synergy and provide a good candidate extractant. In this study, DESs of glyceline, ethaline, and reline were synthesized and their binary mixtures (glyceline/ethaline, reline/ethaline, and glyceline/reline) produced by blending in various volume proportions. Twelve of such mixed solvents were prepared and their extraction efficiency for separating benzene from <i>n</i>-hexane investigated in a batch equilibrium process. Liquid–liquid equilibria (LLE) data for the pseudo-ternary systems of <i>n</i>-hexane + benzene + mixed DESs were measured at 303 K and 101.3 kPa. The distribution coefficient (<i>D</i>) and selectivity (<i>S</i>) of each pseudo-ternary system were determined to elicit extraction efficiency. The physicochemical properties of the mixed DESs were also measured. The results show that generally the distribution coefficients, selectivities, and physicochemical properties of the mixed DESs lie between the corresponding values for the constituent DES. The best performance was given by the mixed solvent of glyceline and ethaline in the 80:20 volume ratio, respectively, with <i>D</i> = 0.75 and <i>S</i> = 422.485. This assertion was further corroborated by higher percent recovery of benzene obtained from the said mixed DES (57.88%) relative to other mixed DESs (≤ 49.11%) examined in this study. Furthermore, its separation efficiency is superior to sulfolane but lower than glyceline, though there was a 9.4% reduction in its viscosity relative to glyceline.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"165 - 182"},"PeriodicalIF":0.125,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00270-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4938550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natália Cristina Dalibera, Maria Helena Ambrosio Zanin, Kleber Lanigra Guimaraes, Leonardo Alencar de Oliveira, Adriano Marim de Oliveira
{"title":"Optimized formulation of thermoresponsive nanoemulsion-based gel for enhanced oil recovery (EOR) application","authors":"Natália Cristina Dalibera, Maria Helena Ambrosio Zanin, Kleber Lanigra Guimaraes, Leonardo Alencar de Oliveira, Adriano Marim de Oliveira","doi":"10.1007/s13203-021-00269-9","DOIUrl":"10.1007/s13203-021-00269-9","url":null,"abstract":"<div><p>A thermoresponsive system of a nanoemulsion-based gel with favorable characteristics to enhanced oil recovery (EOR) application is presented. A full factorial design study with different formulations of thermosensitive nanoemulsion-based gels was performed to assess the influence of the oil chain length, concentration of polyethylene glycol (PEG 400) and concentration of oil on the rheological behavior of the system. A formulation with low viscosity at room temperature and high viscosity at the temperature of the oil extraction well was presented. Hexane (6-carbon chain), capric acid (10-carbon chain) and isopropyl myristate (17-carbon chain) were used in concentrations of 5%, 10%, 15% and 20% wt%, also varying the concentration of PEG 400 in 0%, 3%, 6% and 9% wt%. The thermosensitive polymer used was a mixture of Pluronic<sup>®</sup> F-127 and Pluronic<sup>®</sup> F-68 6:1 wt% at 4.7% concentration. The surfactants used were Tween 80 and Span 80 (HLB = 13) at 20%. The formulation containing 20% isopropyl myristate (IPM) without the addition of PEG 400 showed a better response, with an increase in viscosity of more than 38 times in relation to its viscosity at 25 °C, and the maximum viscosity was reached at 53 °C. This is a promising formulation for EOR technology.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"155 - 163"},"PeriodicalIF":0.125,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00269-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4465663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adel Abdelkader, Basem M. Hussien, Eman M. Fawzy, Asma A. Ibrahim
{"title":"Boehmite nanopowder recovered from aluminum cans waste as a potential adsorbent for the treatment of oilfield produced water","authors":"Adel Abdelkader, Basem M. Hussien, Eman M. Fawzy, Asma A. Ibrahim","doi":"10.1007/s13203-021-00267-x","DOIUrl":"10.1007/s13203-021-00267-x","url":null,"abstract":"<div><p>In the present study, high surface area boehmite nanopowder was recovered from aluminum cans waste. The sodium aluminate solution was first prepared by dissolving aluminum cans in NaOH solution and then, H<sub>2</sub>O<sub>2</sub> solution was added to precipitate boehmite. The prepared boehmite was characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and N<sub>2</sub> adsorption–desorption techniques. The thermal stability of the boehmite sample was investigated using thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The feasibility of using the prepared boehmite powder as a new low-cost adsorbent for the treatment of oilfield produced water was investigated. For comparison, commercial activated carbon was used for the treatment of the produced water under the same conditions. The efficiency of both of boehmite and activated carbon in the treatment of produced water was determined by monitoring the values of a number of pollution indicators [i.e. turbidity, sulfides, sulfates, total organic carbon (TOC), total petroleum hydrocarbon (TPH), and chemical oxygen demand (COD)] before and after the treatment. The boehmite powder showed very good efficiency in the treatment of the produced water, which is very close to that of commercial activated carbon under the same conditions. The effect of adsorbent dose, treatment time, and pH of the media on the adsorption efficiency of both of boehmite and activated carbon was examined at room temperature using chemical oxygen demand as a pollution indicator. The maximum capacity for COD reduction was 69.6% for boehmite and 83.5% for activated carbon at 40 g/l adsorbent dosage, pH7, and 24-h contact time.</p><h3>Graphic abstract</h3>\u0000 <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\u0000 </div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"137 - 146"},"PeriodicalIF":0.125,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00267-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4702035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oumarou Abdoulaye Dan Makaou, Soumahoro Gueu, Marou Gourouza, Kouassi Benjamin Yao
{"title":"Development of semi-synthetic catalyst based on clay and their use in catalytic cracking of petroleum residue","authors":"Oumarou Abdoulaye Dan Makaou, Soumahoro Gueu, Marou Gourouza, Kouassi Benjamin Yao","doi":"10.1007/s13203-021-00268-w","DOIUrl":"10.1007/s13203-021-00268-w","url":null,"abstract":"<div><p>Two semi-synthetic clay-based catalysts were prepared. These catalysts were obtained by incorporating lanthanum oxide (Cat1) and chromium oxide (Cat2). They were then tested for catalytic cracking of a heavy petroleum residue (fuel). The two formulations were carried out in the presence of silica to improve their acidity then underwent an acid activation. The catalysts obtained were characterized by various methods (XRD, FTIR, ICP-OES, SEM). The results showed that the incorporation of oxides and the addition of silica improves the structural characteristics of the final products. The support used was a kaolinite rich clay, having a specific surface area of 15.26 m<sup>2</sup>/g and acidity of 14 meq/g. These values increase, respectively, to 456.14 m<sup>2</sup>/g and 50 meq/g for Cat1 and to 475.12 m<sup>2</sup>/g and 57 meq/g for Cat2. The influence of the type of oxide incorporated, the specific surface area, the porosity and the acidity of the catalysts on their catalytic activity was studied. The nature of the oxide used proved to be decisive on the quality of the catalyst. Thus Cat1, prepared with lanthanum oxide, showed the best performance in cracking the petroleum residue achieving a conversion rate of 74.13% compared to 66.53% for cat2.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"147 - 154"},"PeriodicalIF":0.125,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00268-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4390440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nitrogen-containing aromatic compounds: quantitative analysis using gas chromatography with nitrogen phosphorus detector","authors":"Yuan Rao, Arno de Klerk","doi":"10.1007/s13203-021-00265-z","DOIUrl":"10.1007/s13203-021-00265-z","url":null,"abstract":"<div><p>The nitrogen-containing aromatic compounds found in the petrochemical industry are varied and extend beyond classes such as the anilines, pyrroles and pyridines. Quantification of these nitrogen-containing compounds that may occur in complex mixtures has practical application for quality assurance, process development and the evaluation of conversion processes. Selective detection of nitrogen-containing species in complex mixtures is possible by making use of gas chromatography coupled with a nitrogen phosphorous detector (GC-NPD), which is also called a thermionic detector. Despite the linearity of the NPD response to individual nitrogen-containing compounds, the response factor is different for different compounds and even isomers of the same species. Quantitative analysis using an NPD requires species-specific calibration. The reason for the sensitivity of the NPD to structure is related to the ease of forming the cyano-radical that is ionized to the cyanide anion, which is detected. The operation of the NPD was related to the processes of pyrolysis and subsequent ionization. It was possible to offer plausible explanations for differences in response factors for isomers based on pyrolysis chemistry. Due to this relationship, the NPD response can in the same way be used to provide information of practical relevance beyond its analytical value and a few possible applications were outlined.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"129 - 136"},"PeriodicalIF":0.125,"publicationDate":"2021-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00265-z","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4265602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Georgina C. Laredo, José L. García-Gutiérrez, Patricia Pérez-Romo, Eli H. Olmos-Cerda
{"title":"Effect of the catalyst in the BTX production by hydrocracking of light cycle oil","authors":"Georgina C. Laredo, José L. García-Gutiérrez, Patricia Pérez-Romo, Eli H. Olmos-Cerda","doi":"10.1007/s13203-021-00266-y","DOIUrl":"https://doi.org/10.1007/s13203-021-00266-y","url":null,"abstract":"<p>Catalysts to produce the important petrochemicals like benzene, toluene, and xylene (BTX) from refinery feedstocks, like light cycle oil (LCO) are reviewed here by covering published papers using model mixtures and real feeds. Model compounds experiments like tetralin and naphthalene derivatives provided a 53–55% total BTX yield. Higher yields were never attained due to the inevitable gas formation and other C<sub>9+</sub>-alkylbenzenes formed. For tetralin, the best catalysts are those conformed by Ni, CoMo, NiMo, or NiSn over zeolite H-Beta. For naphthalene derivatives, the best catalysts were those conformed by W and NiW over zeolite H-Beta silylated. Real feeds produced a total BTX yield of up to 35% at the best experimental conditions. Higher yields were never reached due to the presence of other types of hydrocarbons in the feed which can compete for the catalytic sites. The best catalysts were those conformed by Mo, CoMo, or NiMo over zeolite H-Beta. Some improvements were obtained by adding ZSM-5 to the support or in mixtures with other catalysts.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 1","pages":"19 - 38"},"PeriodicalIF":0.125,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00266-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4093564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}