Georgina C. Laredo, José L. García-Gutiérrez, Patricia Pérez-Romo, Eli H. Olmos-Cerda
{"title":"Effect of the catalyst in the BTX production by hydrocracking of light cycle oil","authors":"Georgina C. Laredo, José L. García-Gutiérrez, Patricia Pérez-Romo, Eli H. Olmos-Cerda","doi":"10.1007/s13203-021-00266-y","DOIUrl":null,"url":null,"abstract":"<p>Catalysts to produce the important petrochemicals like benzene, toluene, and xylene (BTX) from refinery feedstocks, like light cycle oil (LCO) are reviewed here by covering published papers using model mixtures and real feeds. Model compounds experiments like tetralin and naphthalene derivatives provided a 53–55% total BTX yield. Higher yields were never attained due to the inevitable gas formation and other C<sub>9+</sub>-alkylbenzenes formed. For tetralin, the best catalysts are those conformed by Ni, CoMo, NiMo, or NiSn over zeolite H-Beta. For naphthalene derivatives, the best catalysts were those conformed by W and NiW over zeolite H-Beta silylated. Real feeds produced a total BTX yield of up to 35% at the best experimental conditions. Higher yields were never reached due to the presence of other types of hydrocarbons in the feed which can compete for the catalytic sites. The best catalysts were those conformed by Mo, CoMo, or NiMo over zeolite H-Beta. Some improvements were obtained by adding ZSM-5 to the support or in mixtures with other catalysts.</p>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 1","pages":"19 - 38"},"PeriodicalIF":0.1250,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00266-y","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00266-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Catalysts to produce the important petrochemicals like benzene, toluene, and xylene (BTX) from refinery feedstocks, like light cycle oil (LCO) are reviewed here by covering published papers using model mixtures and real feeds. Model compounds experiments like tetralin and naphthalene derivatives provided a 53–55% total BTX yield. Higher yields were never attained due to the inevitable gas formation and other C9+-alkylbenzenes formed. For tetralin, the best catalysts are those conformed by Ni, CoMo, NiMo, or NiSn over zeolite H-Beta. For naphthalene derivatives, the best catalysts were those conformed by W and NiW over zeolite H-Beta silylated. Real feeds produced a total BTX yield of up to 35% at the best experimental conditions. Higher yields were never reached due to the presence of other types of hydrocarbons in the feed which can compete for the catalytic sites. The best catalysts were those conformed by Mo, CoMo, or NiMo over zeolite H-Beta. Some improvements were obtained by adding ZSM-5 to the support or in mixtures with other catalysts.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.