Oumarou Abdoulaye Dan Makaou, Soumahoro Gueu, Marou Gourouza, Kouassi Benjamin Yao
{"title":"粘土半合成催化剂的研制及其在石油渣油催化裂化中的应用","authors":"Oumarou Abdoulaye Dan Makaou, Soumahoro Gueu, Marou Gourouza, Kouassi Benjamin Yao","doi":"10.1007/s13203-021-00268-w","DOIUrl":null,"url":null,"abstract":"<div><p>Two semi-synthetic clay-based catalysts were prepared. These catalysts were obtained by incorporating lanthanum oxide (Cat1) and chromium oxide (Cat2). They were then tested for catalytic cracking of a heavy petroleum residue (fuel). The two formulations were carried out in the presence of silica to improve their acidity then underwent an acid activation. The catalysts obtained were characterized by various methods (XRD, FTIR, ICP-OES, SEM). The results showed that the incorporation of oxides and the addition of silica improves the structural characteristics of the final products. The support used was a kaolinite rich clay, having a specific surface area of 15.26 m<sup>2</sup>/g and acidity of 14 meq/g. These values increase, respectively, to 456.14 m<sup>2</sup>/g and 50 meq/g for Cat1 and to 475.12 m<sup>2</sup>/g and 57 meq/g for Cat2. The influence of the type of oxide incorporated, the specific surface area, the porosity and the acidity of the catalysts on their catalytic activity was studied. The nature of the oxide used proved to be decisive on the quality of the catalyst. Thus Cat1, prepared with lanthanum oxide, showed the best performance in cracking the petroleum residue achieving a conversion rate of 74.13% compared to 66.53% for cat2.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"147 - 154"},"PeriodicalIF":0.1250,"publicationDate":"2021-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00268-w","citationCount":"0","resultStr":"{\"title\":\"Development of semi-synthetic catalyst based on clay and their use in catalytic cracking of petroleum residue\",\"authors\":\"Oumarou Abdoulaye Dan Makaou, Soumahoro Gueu, Marou Gourouza, Kouassi Benjamin Yao\",\"doi\":\"10.1007/s13203-021-00268-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two semi-synthetic clay-based catalysts were prepared. These catalysts were obtained by incorporating lanthanum oxide (Cat1) and chromium oxide (Cat2). They were then tested for catalytic cracking of a heavy petroleum residue (fuel). The two formulations were carried out in the presence of silica to improve their acidity then underwent an acid activation. The catalysts obtained were characterized by various methods (XRD, FTIR, ICP-OES, SEM). The results showed that the incorporation of oxides and the addition of silica improves the structural characteristics of the final products. The support used was a kaolinite rich clay, having a specific surface area of 15.26 m<sup>2</sup>/g and acidity of 14 meq/g. These values increase, respectively, to 456.14 m<sup>2</sup>/g and 50 meq/g for Cat1 and to 475.12 m<sup>2</sup>/g and 57 meq/g for Cat2. The influence of the type of oxide incorporated, the specific surface area, the porosity and the acidity of the catalysts on their catalytic activity was studied. The nature of the oxide used proved to be decisive on the quality of the catalyst. Thus Cat1, prepared with lanthanum oxide, showed the best performance in cracking the petroleum residue achieving a conversion rate of 74.13% compared to 66.53% for cat2.</p></div>\",\"PeriodicalId\":472,\"journal\":{\"name\":\"Applied Petrochemical Research\",\"volume\":\"11 2\",\"pages\":\"147 - 154\"},\"PeriodicalIF\":0.1250,\"publicationDate\":\"2021-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s13203-021-00268-w\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Petrochemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13203-021-00268-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00268-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development of semi-synthetic catalyst based on clay and their use in catalytic cracking of petroleum residue
Two semi-synthetic clay-based catalysts were prepared. These catalysts were obtained by incorporating lanthanum oxide (Cat1) and chromium oxide (Cat2). They were then tested for catalytic cracking of a heavy petroleum residue (fuel). The two formulations were carried out in the presence of silica to improve their acidity then underwent an acid activation. The catalysts obtained were characterized by various methods (XRD, FTIR, ICP-OES, SEM). The results showed that the incorporation of oxides and the addition of silica improves the structural characteristics of the final products. The support used was a kaolinite rich clay, having a specific surface area of 15.26 m2/g and acidity of 14 meq/g. These values increase, respectively, to 456.14 m2/g and 50 meq/g for Cat1 and to 475.12 m2/g and 57 meq/g for Cat2. The influence of the type of oxide incorporated, the specific surface area, the porosity and the acidity of the catalysts on their catalytic activity was studied. The nature of the oxide used proved to be decisive on the quality of the catalyst. Thus Cat1, prepared with lanthanum oxide, showed the best performance in cracking the petroleum residue achieving a conversion rate of 74.13% compared to 66.53% for cat2.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.