Natália Cristina Dalibera, Maria Helena Ambrosio Zanin, Kleber Lanigra Guimaraes, Leonardo Alencar de Oliveira, Adriano Marim de Oliveira
{"title":"Optimized formulation of thermoresponsive nanoemulsion-based gel for enhanced oil recovery (EOR) application","authors":"Natália Cristina Dalibera, Maria Helena Ambrosio Zanin, Kleber Lanigra Guimaraes, Leonardo Alencar de Oliveira, Adriano Marim de Oliveira","doi":"10.1007/s13203-021-00269-9","DOIUrl":null,"url":null,"abstract":"<div><p>A thermoresponsive system of a nanoemulsion-based gel with favorable characteristics to enhanced oil recovery (EOR) application is presented. A full factorial design study with different formulations of thermosensitive nanoemulsion-based gels was performed to assess the influence of the oil chain length, concentration of polyethylene glycol (PEG 400) and concentration of oil on the rheological behavior of the system. A formulation with low viscosity at room temperature and high viscosity at the temperature of the oil extraction well was presented. Hexane (6-carbon chain), capric acid (10-carbon chain) and isopropyl myristate (17-carbon chain) were used in concentrations of 5%, 10%, 15% and 20% wt%, also varying the concentration of PEG 400 in 0%, 3%, 6% and 9% wt%. The thermosensitive polymer used was a mixture of Pluronic<sup>®</sup> F-127 and Pluronic<sup>®</sup> F-68 6:1 wt% at 4.7% concentration. The surfactants used were Tween 80 and Span 80 (HLB = 13) at 20%. The formulation containing 20% isopropyl myristate (IPM) without the addition of PEG 400 showed a better response, with an increase in viscosity of more than 38 times in relation to its viscosity at 25 °C, and the maximum viscosity was reached at 53 °C. This is a promising formulation for EOR technology.</p></div>","PeriodicalId":472,"journal":{"name":"Applied Petrochemical Research","volume":"11 2","pages":"155 - 163"},"PeriodicalIF":0.1250,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s13203-021-00269-9","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Petrochemical Research","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13203-021-00269-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A thermoresponsive system of a nanoemulsion-based gel with favorable characteristics to enhanced oil recovery (EOR) application is presented. A full factorial design study with different formulations of thermosensitive nanoemulsion-based gels was performed to assess the influence of the oil chain length, concentration of polyethylene glycol (PEG 400) and concentration of oil on the rheological behavior of the system. A formulation with low viscosity at room temperature and high viscosity at the temperature of the oil extraction well was presented. Hexane (6-carbon chain), capric acid (10-carbon chain) and isopropyl myristate (17-carbon chain) were used in concentrations of 5%, 10%, 15% and 20% wt%, also varying the concentration of PEG 400 in 0%, 3%, 6% and 9% wt%. The thermosensitive polymer used was a mixture of Pluronic® F-127 and Pluronic® F-68 6:1 wt% at 4.7% concentration. The surfactants used were Tween 80 and Span 80 (HLB = 13) at 20%. The formulation containing 20% isopropyl myristate (IPM) without the addition of PEG 400 showed a better response, with an increase in viscosity of more than 38 times in relation to its viscosity at 25 °C, and the maximum viscosity was reached at 53 °C. This is a promising formulation for EOR technology.
期刊介绍:
Applied Petrochemical Research is a quarterly Open Access journal supported by King Abdulaziz City for Science and Technology and all the manuscripts are single-blind peer-reviewed for scientific quality and acceptance. The article-processing charge (APC) for all authors is covered by KACST. Publication of original applied research on all aspects of the petrochemical industry focusing on new and smart technologies that allow the production of value-added end products in a cost-effective way. Topics of interest include: • Review of Petrochemical Processes • Reaction Engineering • Design • Catalysis • Pilot Plant and Production Studies • Synthesis As Applied to any of the following aspects of Petrochemical Research: -Feedstock Petrochemicals: Ethylene Production, Propylene Production, Butylene Production, Aromatics Production (Benzene, Toluene, Xylene etc...), Oxygenate Production (Methanol, Ethanol, Propanol etc…), Paraffins and Waxes. -Petrochemical Refining Processes: Cracking (Steam Cracking, Hydrocracking, Fluid Catalytic Cracking), Reforming and Aromatisation, Isomerisation Processes, Dimerization and Polymerization, Aromatic Alkylation, Oxidation Processes, Hydrogenation and Dehydrogenation. -Products: Polymers and Plastics, Lubricants, Speciality and Fine Chemicals (Adhesives, Fragrances, Flavours etc...), Fibres, Pharmaceuticals.