Applied Nanoscience最新文献

筛选
英文 中文
Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach 检测 Ag+ 和 Cu2+ 的纳米粒子演变的络合-还原法:一种协同方法
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-01 DOI: 10.1007/s13204-024-03042-1
Priyanka Sharma, Mainak Ganguly, Ankita Doi
{"title":"Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach","authors":"Priyanka Sharma,&nbsp;Mainak Ganguly,&nbsp;Ankita Doi","doi":"10.1007/s13204-024-03042-1","DOIUrl":"10.1007/s13204-024-03042-1","url":null,"abstract":"<div><p>Schiff base compounds were reported to make a complex with Cu<sup>2+</sup> and Ag<sup>+</sup> and subsequent reduction produced Cu<sup>0</sup> and Ag<sup>0</sup> nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu<sup>2+</sup> and made Cu<sup>0</sup> nanoparticles after 8 h aging. In that reaction mixture, addition of Ag<sup>+</sup> resulted in Ag<sup>0</sup> nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu<sup>2+</sup> (linear range of detection 10<sup>–4</sup> to 5 × 10<sup>–8</sup> M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag<sup>+</sup> in it produced Ag<sup>0</sup> and Cu<sup>0</sup> (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag<sup>+</sup> detection (linear detection range 10<sup>–3</sup>–10<sup>–7</sup> M, and limit of detection 7. 7 μM). Thus, Cu<sup>2+</sup> and Ag<sup>+</sup> were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag<sup>+</sup>-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag<sup>+</sup> was employed for the colorimetric sensing of Ag<sup>+</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"739 - 751"},"PeriodicalIF":3.674,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions 一锅水热法绿色合成氮掺杂碳量子点用于单宁酸和 Hg2+ 离子的超灵敏双重检测
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-16 DOI: 10.1007/s13204-024-03036-z
K. Periyarselvam, P. Sivakumar, S. Kanimozhi, R. Elavarasi
{"title":"One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions","authors":"K. Periyarselvam,&nbsp;P. Sivakumar,&nbsp;S. Kanimozhi,&nbsp;R. Elavarasi","doi":"10.1007/s13204-024-03036-z","DOIUrl":"10.1007/s13204-024-03036-z","url":null,"abstract":"<div><p>Green-synthesized nitrogen-doped carbon quantum dots (N-CQDs), offering an excellent platform for the ultra-sensitive dual detection of tannic acid and Hg<sup>2+</sup> ions, were explored in this work. The N-CQDs were synthesized in a straightforward, cost-effective, and environmentally friendly hydrothermal method. These N-CQDs exhibited remarkable and dynamic “on-off-on” luminescent characteristics, demonstrating an exceptional sensitivity and selectivity towards tannic acid and Hg<sup>2+</sup> ions. The specific interactions between the N-CQDs and tannic acid, along with the reversible binding with Hg<sup>2+</sup> ions, contribute to the distinct dual-detection capabilities. The sensing system covers a linear concentration range of 10–80 µM to tannic acid and 0.1 to 1 nm for Hg<sup>2+</sup>, showcasing its versatility for different concentration range with a lower detection limit of 25 nM and 3 nM, respectively. Furthermore, the N-CQDs displayed high stability and minimal interference from typical interfering species, making them a desirable tool for environmental monitoring and quality control. Validation through real sample analysis substantiates the accuracy and reliability of the developed sensing approach in practical scenarios. This study not only underscores the promise of green-synthesized N-CQDs as enhanced fluorescence probes but also contributes to the development of efficient and environmentally friendly materials for dual sensing applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"649 - 662"},"PeriodicalIF":3.674,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics 用于可穿戴电子设备的 MXene/纤维素纳米晶体涂层棉织物电极
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03034-1
İnal Kaan Duygun, Ayşe Bedeloğlu
{"title":"MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics","authors":"İnal Kaan Duygun,&nbsp;Ayşe Bedeloğlu","doi":"10.1007/s13204-024-03034-1","DOIUrl":"10.1007/s13204-024-03034-1","url":null,"abstract":"<div><p>Increasing mechanical properties without losing electrical properties is of great importance for the development of advanced electronic textile products and their use in different areas. In this study, a cost-effective and facile preparation of MXene/cellulose nanocrystal-coated cotton fabrics by drop-casting was carried out to investigate electrical and mechanical properties of plain woven cotton fabrics. MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) and cellulose nanocrystal dispersions of MXene (5 wt.%, 10 wt.% and 15 wt.% cellulose nanocrystal content) were applied to cotton fabrics, and the coated fabrics were characterized in terms of their morphological and structural properties for their suitability for wearable electronics. The surface resistivity and mechanical properties were also determined to evaluate the effectiveness of coating. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/cellulose nanocrystal dispersions are suitable to obtain a low electrical resistivity (186.4 Ω/sq) in cotton fabrics. The results also showed that increasing cellulose nanocrystal content results in a more stable coating layer on the cotton fabric and a high tensile (63.2 MPa) and elongation at break values are obtained (30.2%) as a result of that.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"575 - 584"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation 基于蜂胶介导合成过程中 pH 值变化的氧化铜纳米颗粒:结构、光学特性、紫外线阻隔能力和孔雀石绿光降解研究
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03035-0
Mohammad N. Murshed, Mansour S. Abdul Galil, Samir Osman Mohammed, Mohamed E. El Sayed, Mohyeddine Al‑qubati, Ebkar Abdo Ahmed Saif
{"title":"The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation","authors":"Mohammad N. Murshed,&nbsp;Mansour S. Abdul Galil,&nbsp;Samir Osman Mohammed,&nbsp;Mohamed E. El Sayed,&nbsp;Mohyeddine Al‑qubati,&nbsp;Ebkar Abdo Ahmed Saif","doi":"10.1007/s13204-024-03035-0","DOIUrl":"10.1007/s13204-024-03035-0","url":null,"abstract":"<div><p>In third-world countries, the biosynthesis of multi-purpose copper oxide nanoparticles is a crucial solution for pollution, but studies on controlling their properties through internal structure are still limited. This work generated copper oxide nanoparticles (CONPs) using bee propolis as a reducing and capping agent, employing an ecologically benign, simple, inexpensive, and economical technique. The pH of this biosynthesis was varied (6.4, 7.8, 9.2, 10.4, and 11.7). The study computed various structural and optical parameters of biosynthesized CONP samples, revealing nonlinear changes with pH, including unit cell, Cu–O bond length, crystal size, microstrain, energy band gap, Urbach energy, and more. The current research has shown promising results in blocking ultraviolet rays effectively. The blocking parameters were calculated for CONPs samples, and it was found that the pH 8 sample had the best blocking capacity at both regions A and B (90.31 and 91.31%, respectively). The study effectively investigated CONPs’ potential as a catalyst for increasing dye photodegradation. The pH 6.4 sample showed the highest degradation rate (94.15%). The UV-blocking and photodegradation properties of the CONPs samples were explained using the structural and optical parameters.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"585 - 602"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03035-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging 成像新领域:用于多模式成像的天然矿石来源超顺磁性磁铁矿纳米粒子
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-08 DOI: 10.1007/s13204-023-02993-1
A. Asha, M. Chamundeeswari, R. Mary Nancy Flora, N. Padmamalini
{"title":"A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging","authors":"A. Asha,&nbsp;M. Chamundeeswari,&nbsp;R. Mary Nancy Flora,&nbsp;N. Padmamalini","doi":"10.1007/s13204-023-02993-1","DOIUrl":"10.1007/s13204-023-02993-1","url":null,"abstract":"<div><p>In the ever-evolving field of medical diagnostics and imaging, the development of efficient and versatile contrast agents remains pivotal. This study presents a pioneering approach to synthesize superparamagnetic magnetite nanoparticles (SM-NPs) derived from natural ore using an environmentally friendly, green chemistry approach. These SM-NPs exhibit exceptional magnetic properties, surpassing all other forms of iron oxide, making them a novel and promising multi-imaging agent for various biomedical applications. The SM-NPs were synthesized with high purity from naturally occurring magnetite, sourced from the Earth's crust. Characterization via X-ray diffraction (XRD) confirmed the cubic spinel ferrites structure of the sample, with an average particle size of 21.24 nm. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed the presence of elemental functional groups, further supporting the material's suitability for biomedical use. Morphological analysis using field emission scanning electron microscopy with energy-dispersive X-ray analysis (FESEM-EDX) unveiled agglomerated spherical particles ranging in size from 60 to 80 nm. The elemental composition analysis via EDX demonstrated predominant iron (Fe) and oxygen (O) elements at concentrations of 75.55% and 20.76%, respectively. The magnetic properties of the SMNPs were assessed using a vibrating sample magnetometer (VSM), revealing a superparamagnetic behavior, as evidenced by the M-H plot. Furthermore, X-ray imaging exhibited a significant signal, even with just 40 mg of the substance, suggesting its potential as a robust contrast agent. Complementary findings from computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated substantial absorption capabilities, even at relatively low concentrations of SM-NPs. These remarkable attributes position the green-synthesized SM-NPs as a highly versatile and efficient multi-imaging agent for various biomedical applications. This single nanomaterial can revolutionize disease diagnosis, treatment monitoring, and drug delivery within the biomedical field, offering a greener and more effective approach to medical imaging and diagnostics.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"559 - 573"},"PeriodicalIF":3.674,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140073672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trends in sustainable materials for passive thermal management in 5G enabled portable electronics 用于 5G 便携式电子设备无源热管理的可持续材料发展趋势
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-06 DOI: 10.1007/s13204-024-03033-2
Sriharini Senthilkumar, Brindha Ramasubramanian, Subramanian Sundarrajan, Seeram Ramakrishna
{"title":"Trends in sustainable materials for passive thermal management in 5G enabled portable electronics","authors":"Sriharini Senthilkumar,&nbsp;Brindha Ramasubramanian,&nbsp;Subramanian Sundarrajan,&nbsp;Seeram Ramakrishna","doi":"10.1007/s13204-024-03033-2","DOIUrl":"10.1007/s13204-024-03033-2","url":null,"abstract":"<div><p>The requirement for passive thermal regulation in portable electronic devices enabled by 5G has escalated due to the significant heat produced during the operation of devices, resulting in a detrimental rise in human body temperature and reduced device longevity. This article explores various materials, such as hydrogels, metal–organic frameworks (MOFs), and phase-change materials (PCMs), which utilize natural convection and radiation to dissipate heat from the device, and their potential challenges and solutions for improvement. Hydrogels are not an optimal material due to their lack of cyclic stability and limited water adsorption capability, while MOFs are expensive and PCMs struggle with internal leakage during the solid-to-liquid transition. Thus, insights into novel hybrid materials and their potential for thermal resistance have been discussed. The study considers material marketing and sustainability. To enhance material performance, early-stage inclusion of recyclable, biomass-derived, or environmentally beneficial materials is recommended. Addressing the heat issue in 5G-enabled portable electronics, the article introduces practical passive thermal management materials.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"543 - 557"},"PeriodicalIF":3.674,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140046400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Verifying antibacterial properties of nanopillars on cicada wings 验证蝉翼上纳米柱的抗菌性能
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-02-22 DOI: 10.1007/s13204-024-03030-5
Richard W. van Nieuwenhoven, Alexander M. Bürger, Laura L. E. Mears, Philip Kienzl, Manuel Reithofer, Adelheid Elbe-Bürger, Ille C. Gebeshuber
{"title":"Verifying antibacterial properties of nanopillars on cicada wings","authors":"Richard W. van Nieuwenhoven,&nbsp;Alexander M. Bürger,&nbsp;Laura L. E. Mears,&nbsp;Philip Kienzl,&nbsp;Manuel Reithofer,&nbsp;Adelheid Elbe-Bürger,&nbsp;Ille C. Gebeshuber","doi":"10.1007/s13204-024-03030-5","DOIUrl":"10.1007/s13204-024-03030-5","url":null,"abstract":"<div><p>The antibacterial properties of cicada wings originate from hexagonally arranged pillar-like multi-functional nanostructures with species-dependent heights, which are super-hydrophobic and self-cleaning. In the present study, two cicada species with promising nanopillars were investigated in more detail. Selected methods were used to analyze the wing surfaces, including Atomic Force Microscopy, Scanning Electron Microscopy, and bacterial tests with live/dead staining. Verifying the antibacterial properties posed challenges, such as the bacteria concentration needed to confirm the antibacterial properties. These challenges will also impact the practical implementation of antibacterial nanostructures and support the findings of recent critical publications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"531 - 541"},"PeriodicalIF":3.674,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03030-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139925959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface functionalization of MnO2 NW embellished with metal nanoparticles for self-cleaning applications 缀有金属纳米颗粒的 MnO2 NW 表面功能化,用于自清洁应用
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-02-21 DOI: 10.1007/s13204-024-03032-3
Stacy A. Lynrah, P. Chinnamuthu, Rajshree Rajkumari, Ying Ying Lim, Lanusubo Walling, L. Vigneash
{"title":"Surface functionalization of MnO2 NW embellished with metal nanoparticles for self-cleaning applications","authors":"Stacy A. Lynrah,&nbsp;P. Chinnamuthu,&nbsp;Rajshree Rajkumari,&nbsp;Ying Ying Lim,&nbsp;Lanusubo Walling,&nbsp;L. Vigneash","doi":"10.1007/s13204-024-03032-3","DOIUrl":"10.1007/s13204-024-03032-3","url":null,"abstract":"<div><p>The present study investigates the synthesis of vertically aligned MnO<sub>2</sub> nanowires (NW) decorated with gold (Au) and silver (Ag) nanoparticles (NP) via the glancing angle deposition (GLAD) technique without a need for a catalyst. The cross-sectional field emission scanning electron microscopy (FESEM) image and energy-dispersive X-ray spectroscopy (EDS) confirm the successful adornment of Ag NP and Au NP on the top surface of MnO<sub>2</sub> NW. Elemental mapping has verified the presence of manganese (Mn), oxygen (O), silicon (Si), Ag, and Au within the sample. X-ray diffraction (XRD) patterns reveal the polycrystalline growth of the MnO<sub>2</sub> film with the preferred orientation. AFM reveals that the surface roughness of Au NP/MnO<sub>2</sub> NW is more than Ag NP/MnO<sub>2</sub> NW. The measured water contact angles of Au NP/MnO<sub>2</sub> NW, Ag NP/MnO<sub>2</sub> NW, and MnO<sub>2</sub> NW were 125° and 113°, respectively. Ag NP/MnO<sub>2</sub> NW showed more hydrophilic properties under UV illumination than Au NP/MnO<sub>2</sub> NW owing to the efficient separation of photogenerated electron–hole pairs. Ag NP/MnO<sub>2</sub> NW’s higher photocatalytic activity than Au NP/MnO<sub>2</sub> NW is attributed to the increased light absorption of the Ag NP in the UV region. The overall enhancement after decorating the noble metal NP on MnO<sub>2</sub> NW could open new avenues for self-cleaning applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"519 - 529"},"PeriodicalIF":3.674,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139921037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation-assisted synthesis of water soluble starch encapsulated copper nanoparticles and its applicability toward photocatalytic reduction of p-nitrophenol 辐射辅助合成水溶性淀粉封装纳米铜粒子及其在光催化还原对硝基苯酚中的应用
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-02-17 DOI: 10.1007/s13204-024-03031-4
Chandra Nath Roy, Susmita Maiti, Tushar Kanti Das, Somashree Kundu, Sudip Karmakar, Aparna Datta, Abhijit Saha
{"title":"Radiation-assisted synthesis of water soluble starch encapsulated copper nanoparticles and its applicability toward photocatalytic reduction of p-nitrophenol","authors":"Chandra Nath Roy,&nbsp;Susmita Maiti,&nbsp;Tushar Kanti Das,&nbsp;Somashree Kundu,&nbsp;Sudip Karmakar,&nbsp;Aparna Datta,&nbsp;Abhijit Saha","doi":"10.1007/s13204-024-03031-4","DOIUrl":"10.1007/s13204-024-03031-4","url":null,"abstract":"<div><p>Copper nanoparticles (CuNPs) have drawn considerable interest because of recent evidences on greater Surface Enhanced Raman Spectroscopic (SERS) signal enhancing capability, high antibacterial activity and strong catalytic property with regard to the long existing popular silver and gold particles. The existing chemical synthesis methods usually require extensive purification to remove unreacted inorganic reducing agents, like sodium borohydride used to convert Cu<sup>2+</sup> ions to Cu<sup>0</sup> and it limits direct use of as-prepared materials in biologic systems. Here, we have endeavored to synthesize starch encapsulated CuNPs through radiation chemical approach which is considered to be one of the cleanest routes and involve <i>in-situ</i> generated hydrated electrons to reduce metal ions directly. Presence of large number of hydroxyl groups within starch molecules facilitates complexation of Cu(II) and thereby stabilizes CuNPs. Transmission electron microscopy (TEM) coupled with selected area electron diffraction (SAED) illustrate that particles synthesized at a typical dose of 83.6 kGy are spherical with size of ca. 8 nm having polycrystalline face-centered cubic phase. The observed blue shift of the absorption maximum suggests formation of smaller sized particles with increase in applied radiation dose keeping other parameters same and this is supported by dynamic light scattering (DLS) data. Further, catalytic efficiency of as-synthesized CuNPs was tested by monitoring sodium borohydride mediated catalytic reduction of <i>para</i>-nitrophenol to <i>para</i>-aminophenol and the apparent rate constant (<i>k</i><sub>app</sub>) was estimated as 3 × 10<sup>–3</sup> s<sup>−1</sup>. Thus, as-synthesized CuNPs appears to be better catalyst than the copper nanoparticles synthesized through conventional method for having <i>k</i><sub>app</sub> of about 1.6 × 10<sup>–3</sup> s<sup>−1</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"507 - 518"},"PeriodicalIF":3.674,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Peroxidase-mimetic colloidal nanozyme from ozone-oxidized lignocellulosic biomass for biosensing of H2O2 and bacterial contamination in water 从臭氧氧化木质纤维素生物质中提取过氧化物酶模拟胶体纳米酶,用于水中 H2O2 和细菌污染的生物传感
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-02-12 DOI: 10.1007/s13204-024-02995-7
Pravin Savata Gade, Rutuja Murlidhar Sonkar, Dipita Roy, Praveena Bhatt
{"title":"Peroxidase-mimetic colloidal nanozyme from ozone-oxidized lignocellulosic biomass for biosensing of H2O2 and bacterial contamination in water","authors":"Pravin Savata Gade,&nbsp;Rutuja Murlidhar Sonkar,&nbsp;Dipita Roy,&nbsp;Praveena Bhatt","doi":"10.1007/s13204-024-02995-7","DOIUrl":"10.1007/s13204-024-02995-7","url":null,"abstract":"<div><p>Nanozymes, possessing enzyme-like traits, have gained tremendous attention for their functionality, ease of production, economical synthesis, and stability. Majority of reported nanozymes in literature, for analyte detection are metal-based compounds, transition metal dichalcogenides or single-atom nanozymes. In this study, we report for the first time, a novel peroxidase-mimic, colloidal dendritic nanozyme from lignin-rich agro-industrial residue (coconut husk) by ozonolysis. Synthesized nanozyme exhibited peroxidase-mimic activity in sensing H<sub>2</sub>O<sub>2</sub>, with a wide range of substrates and detection techniques. When 3,3′,5,5′-tetramethylbenzidine (TMB) and 2′,7′–dichlorofluorescin diacetate (DCFDA) were used, the nanozyme demonstrated ultrafast kinetic behaviour with LOD of 43.60 ± 2.41 µM and 1.25 ± 0.31 µM H<sub>2</sub>O<sub>2</sub>, by colorimetric and fluorimetric assays, respectively. The nanozyme-based H<sub>2</sub>O<sub>2</sub> sensing platform, was further utilized for detection of pathogenic bacteria namely <i>Escherichia coli, Listeria monocytogenes, Staphylococcus aureus and Pseudomonas aeruginosa</i>, and for total bacterial load in water. Notably, it demonstrated high sensitivity in the detection of <i>P. aeruginosa</i> with LOD as low as 7 CFU/mL with both fluorimetric and electrochemical methods. Ultrasensitive detection of total bacterial load could also be achieved with 5.5 × 10<sup>2</sup> CFU/mL, 5.5 × 10<sup>1</sup> CFU/mL, and 4.1 × 10<sup>1</sup> CFU/mL by colorimetric, fluorometric, and electrochemical techniques, respectively. Results of the study thus indicate, that the developed nanozyme-based sensing platform had high sensitivity for detection of bacteria as well as versatility with diverse analytical approaches enabling potential practical application for “onsite” monitoring of water quality, especially in rural settings. This biological mimic can also be used in sensor platforms where H<sub>2</sub>O<sub>2</sub> is measured and applied for output signaling.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"491 - 505"},"PeriodicalIF":3.674,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信