{"title":"Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach","authors":"Priyanka Sharma, Mainak Ganguly, Ankita Doi","doi":"10.1007/s13204-024-03042-1","DOIUrl":null,"url":null,"abstract":"<div><p>Schiff base compounds were reported to make a complex with Cu<sup>2+</sup> and Ag<sup>+</sup> and subsequent reduction produced Cu<sup>0</sup> and Ag<sup>0</sup> nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu<sup>2+</sup> and made Cu<sup>0</sup> nanoparticles after 8 h aging. In that reaction mixture, addition of Ag<sup>+</sup> resulted in Ag<sup>0</sup> nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu<sup>2+</sup> (linear range of detection 10<sup>–4</sup> to 5 × 10<sup>–8</sup> M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag<sup>+</sup> in it produced Ag<sup>0</sup> and Cu<sup>0</sup> (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag<sup>+</sup> detection (linear detection range 10<sup>–3</sup>–10<sup>–7</sup> M, and limit of detection 7. 7 μM). Thus, Cu<sup>2+</sup> and Ag<sup>+</sup> were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag<sup>+</sup>-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag<sup>+</sup> was employed for the colorimetric sensing of Ag<sup>+</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"739 - 751"},"PeriodicalIF":3.6740,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03042-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Schiff base compounds were reported to make a complex with Cu2+ and Ag+ and subsequent reduction produced Cu0 and Ag0 nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu2+ and made Cu0 nanoparticles after 8 h aging. In that reaction mixture, addition of Ag+ resulted in Ag0 nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu2+ (linear range of detection 10–4 to 5 × 10–8 M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag+ in it produced Ag0 and Cu0 (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag+ detection (linear detection range 10–3–10–7 M, and limit of detection 7. 7 μM). Thus, Cu2+ and Ag+ were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag+-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag+ was employed for the colorimetric sensing of Ag+.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.