Applied Nanoscience最新文献

筛选
英文 中文
Influence of melamine and graphene oxide on the performance of polyamide reverse osmosis membranes for desalination 三聚氰胺和氧化石墨烯对用于海水淡化的聚酰胺反渗透膜性能的影响
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-04 DOI: 10.1007/s13204-024-03037-y
Esraa M. Elghonemy, Gehad Hamdy, Heba Abdallah, Naglaa Saad, Fatma A. Taher
{"title":"Influence of melamine and graphene oxide on the performance of polyamide reverse osmosis membranes for desalination","authors":"Esraa M. Elghonemy,&nbsp;Gehad Hamdy,&nbsp;Heba Abdallah,&nbsp;Naglaa Saad,&nbsp;Fatma A. Taher","doi":"10.1007/s13204-024-03037-y","DOIUrl":"10.1007/s13204-024-03037-y","url":null,"abstract":"<div><p>Membrane-based desalination technology stands out as a promising solution to obtain potable water by creating opportunities for water recovery. The productivity and fouling of the reverse osmosis (RO) membranes are the most common problems in desalination processes. The effect of Melamine-grafted graphene Oxide (MEL/GO) in the RO membrane preparation has a gap in existing knowledge through understanding the specific effects and synergies of these materials in membrane synthesis and desalination performance. In this study, we employed the phase inversion technique to synthesize polyamide (PA) RO membranes incorporating MEL/GO. Various membrane properties were investigated, including hydrophilicity, porosity, surface and cross-sectional morphology, permeability, and membrane performance. It was found that the optimum MEL and GO concentrations were 0.1 and 0.3% w/w, respectively. The performance of MEL, GO, and MEL/GO-incorporated membrane (Mm0.1, MG0.3, and Mm0.1/G0.3, respectively) with previously mentioned optimized concentrations resulted in enhanced performance characteristics against plain membrane (M0) free from MEL and GO. Specifically, the water flux significantly increased from 10.01 LMH/bar for M0 to 73.47 LMH/bar, 23.35 LMH/bar, and 88.21 LMH/bar for the Mm0.1, MG0.3, and Mm0.1/G0.3 membranes, respectively. Moreover, the salt rejection percentage experienced a substantial enhancement from 71.74% for the M0 to 96.57% for the Mm0.1/G0.3 membrane. This study's novelty was introducing MEL into the GO layer for the first time, enriching the amine functional group and facilitating water transportation. The results highlight the potential of these highly hydrophilic nanofillers for advanced membrane technology in desalination applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"633 - 647"},"PeriodicalIF":3.674,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of functionalization on the optical properties of polymer-based nanostructure 功能化对聚合物基纳米结构光学特性的影响
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-04 DOI: 10.1007/s13204-024-03045-y
Aleena Ann Mathew, Neethu Joseph, Elcey C. Daniel, Manoj Balachandran
{"title":"Effect of functionalization on the optical properties of polymer-based nanostructure","authors":"Aleena Ann Mathew,&nbsp;Neethu Joseph,&nbsp;Elcey C. Daniel,&nbsp;Manoj Balachandran","doi":"10.1007/s13204-024-03045-y","DOIUrl":"10.1007/s13204-024-03045-y","url":null,"abstract":"<div><p>Polymer nanomaterials are an emanating area of research incited by the wide range of applications in solar cells, catalysis, sensors, drug delivery, electronics, bioimaging, etc., due to their outstanding mechanical, optical and electronic properties. Small dimensions in the nanometre range and a high surface-to-volume ratio of polymer nanomaterials possess distinctive features compared to bulk counterparts. In this work, doped polyvinyl alcohol (PVA) nanostructures were prepared by a one-step hydrothermal synthesis method and studied the morphological, structural and optical properties. The attained nanomaterials exhibit a spherical shape, and their average size was calculated as 3.98 nm by HR-TEM analysis. The obtained nanomaterials are dissolved in <i>N</i>,<i>N</i>-dimethyl formamide (DMF) solvent and can be employed for optoelectronic devices due to their amorphous structure and direct bandgap. Green luminescence was observed under UV light, and non-biocidal activity showed against <i>Escherichia coli, Pseudomonas fluorescens, E. coli DH5</i>α, <i>Bacillus subtilis</i> and <i>Staphylococcus aureus.</i></p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"771 - 776"},"PeriodicalIF":3.674,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sunlight-assisted photocatalytic degradation of azithromycin using cellulose nanocrystals–TiO2 composites 利用纤维素纳米晶体-二氧化钛复合材料在阳光辅助下光催化降解阿奇霉素
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-02 DOI: 10.1007/s13204-024-03039-w
Abhijit Saha, Swambabu Varanasi
{"title":"Sunlight-assisted photocatalytic degradation of azithromycin using cellulose nanocrystals–TiO2 composites","authors":"Abhijit Saha,&nbsp;Swambabu Varanasi","doi":"10.1007/s13204-024-03039-w","DOIUrl":"10.1007/s13204-024-03039-w","url":null,"abstract":"<div><p>Antibiotics are life-saving drugs that fight bacterial infections by killing or inhibiting their reproduction. However, the overuse and misuse of this drug can contaminate water as it can reach the water surface very quickly through various pathways. The consumption of contaminated water may lead to the development of antibiotic resistance, which has been proliferating across the world recently. Azithromycin (AZM), an essential antibiotic drug, has been identified in wastewater and surface water, prompting apprehension regarding its potential environmental and public health consequences. The present investigation assessed the efficacy of photocatalytic degradation of AZM in water samples under sunlight. Exploiting the surface chemistry and high surface area of cellulose nanocrystals (CNC), nanocomposites with high loading (80 wt%) of titanium dioxide (TiO<sub>2</sub>) nanoparticles on a minimal amount of scaffold (20 wt% CNC) were synthesized and used as catalysts. Maximum removal efficiency of 98.8% was achieved in 5 h at a catalyst dose of 175 mg/L for an AZM solution with 10 mg/L concentration. Synthesized CNC–TiO<sub>2</sub> nanocomposites demonstrated superior performance both in terms of high degradation efficiency and lowest catalyst loading per the g of AZM compared the material reported in the literature for the degradation of AZM. In conclusion, CNC–TiO<sub>2</sub> nanocomposites are highly effective catalysts for the photocatalytic degradation of AZM. The developed method further ensures the hygiene of water sources and prevents the spread of antibiotic resistance.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"675 - 686"},"PeriodicalIF":3.674,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, characterization and preparation of scattered nano sphered alumina: acetone-based nanofluid with enhanced stability and thermal properties 散射纳米球状氧化铝的合成、表征和制备:具有更高稳定性和热性能的丙酮基纳米流体
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-02 DOI: 10.1007/s13204-024-03041-2
T. N. Nithin, M. Narendra Kumar, Dinesh Nolakha, K. Gopalakrishna, Krishna Venkatesh
{"title":"Synthesis, characterization and preparation of scattered nano sphered alumina: acetone-based nanofluid with enhanced stability and thermal properties","authors":"T. N. Nithin,&nbsp;M. Narendra Kumar,&nbsp;Dinesh Nolakha,&nbsp;K. Gopalakrishna,&nbsp;Krishna Venkatesh","doi":"10.1007/s13204-024-03041-2","DOIUrl":"10.1007/s13204-024-03041-2","url":null,"abstract":"<div><p>The potential cooling solutions for the next generation are represented by nanofluids, offering several advantages for various technological applications. The intriguing realm of glycine-based acetone-based <span>({{text{Al}}}_{2}{{text{O}}}_{3})</span> nanofluids was explored in the present investigation, with meticulous attention to details given to scrutinizing their stability and thermophysical properties. The stability of the nanofluids was determined through a trifecta of analytical methods, namely visual inspection, <i>UV</i> absorbance measurement, and zeta potential analysis, all applied with caution. The results revealed that stability was observed for a duration of 3 days without glycine, and an impressive 6 week period was achieved when supplemented with the surfactant. The incorporation of glycine enhanced the stability of the colloidal suspension without compromising its thermophysical attributes. Furthermore, the study involved an in-depth examination of the density, viscosity, specific heat, and thermal conductivity of the prepared nanofluids, yielding interesting outcomes. The data showed a marked increase in nanofluid density, viscosity, and thermal conductivity with a corresponding rise in volume concentration, while specific heat exhibited a noticeable reduction. These significant observations were meticulously compared to various existing theoretical models and proposed correlations in the literature. The heat transfer performance of the nanofluid in the context of pulsating heat pipes was evaluated and the results proved riveting. The nanofluid demonstrated superior performance compared to the base fluid, confirming its remarkable efficacy.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"687 - 698"},"PeriodicalIF":3.674,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of α-Fe2O3 on transformer cooling and application α-Fe2O3 对变压器冷却和应用的影响
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-01 DOI: 10.1007/s13204-024-03040-3
Muzaffar Hussain, M. A. Ansari, Feroz A. Mir
{"title":"Effect of α-Fe2O3 on transformer cooling and application","authors":"Muzaffar Hussain,&nbsp;M. A. Ansari,&nbsp;Feroz A. Mir","doi":"10.1007/s13204-024-03040-3","DOIUrl":"10.1007/s13204-024-03040-3","url":null,"abstract":"<div><p>In the current paper, hematite (α Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs) were prepared by the chemical co-precipitation method. These synthesized nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), Raman spectroscopy, and vibrating sample magnetometry (VSM). The XRD studies for the nanoparticles revealed rhombohedral symmetry with space group: R3c (167), and the particle size is about 33.34 nm. The morphological studies carried out by SEM indicated that these prepared samples have a spherical morphology with some porosity. The specific surface area of this sample was calculated by the Brunauer–Emmett–Teller (BET) technique. FTIR spectroscopy confirms the Fe–O and O–Fe–O vibrations corresponding to stretching at the expected positions (520 cm<sup>−1</sup>) related to the structure. From Raman data, modes corresponding to <i>α-</i>Fe<sub>2</sub>O<sub>3</sub> are seen. From DC magnetisation studies, the current sample shows ferrimagnetic behavior. In addition, the value of <i>M</i><sub>s</sub> is 1.027 and value of <i>M</i><sub>r</sub> is 322.787×10<sup>–6</sup>. Further nanofluids of these nanoparticles with different concentrations of transformer oil were prepared. The performance of this nanofluid as a coolant in transformer oil was also studied. The 0.2 g/l concentration shows the maximum improvement in breakdown voltage. Hence, under optimal conditions, these ferrofluids can perform well for insulating purposes.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"753 - 760"},"PeriodicalIF":3.674,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach 检测 Ag+ 和 Cu2+ 的纳米粒子演变的络合-还原法:一种协同方法
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-01 DOI: 10.1007/s13204-024-03042-1
Priyanka Sharma, Mainak Ganguly, Ankita Doi
{"title":"Complexation–reduction method for the evolution of nanoparticles to detect Ag+ and Cu2+: a synergistic approach","authors":"Priyanka Sharma,&nbsp;Mainak Ganguly,&nbsp;Ankita Doi","doi":"10.1007/s13204-024-03042-1","DOIUrl":"10.1007/s13204-024-03042-1","url":null,"abstract":"<div><p>Schiff base compounds were reported to make a complex with Cu<sup>2+</sup> and Ag<sup>+</sup> and subsequent reduction produced Cu<sup>0</sup> and Ag<sup>0</sup> nanoparticles separately via UV irradiation. Here, we synthesized a Schiff base, which initially formed a complexation with Cu<sup>2+</sup> and made Cu<sup>0</sup> nanoparticles after 8 h aging. In that reaction mixture, addition of Ag<sup>+</sup> resulted in Ag<sup>0</sup> nanoparticles. Emissive semi-carbazone (a Schiff base synthesized from semicarbazide and salicylaldehyde) was employed for the first time to selectively and sensitively detect Cu<sup>2+</sup> (linear range of detection 10<sup>–4</sup> to 5 × 10<sup>–8</sup> M and limit of detection 13 μM) with the formation of copper oxide nanoparticles via complexation–reduction method. The introduction of Ag<sup>+</sup> in it produced Ag<sup>0</sup> and Cu<sup>0</sup> (CuO via aerial oxidation) nanoparticles with a gigantic increase of fluorescence to obtain selective and sensitive Ag<sup>+</sup> detection (linear detection range 10<sup>–3</sup>–10<sup>–7</sup> M, and limit of detection 7. 7 μM). Thus, Cu<sup>2+</sup> and Ag<sup>+</sup> were detected based on turn-off/on fluorescence in one pot. As the evolution of copper and silver nanoparticles was the fundamental reason for sensing, response time is similar to the stable fluorescence behavior of oxidized SC (capping agent) with in situ generated copper and silver nanoparticles. CuO-induced fluorescence quenching was due to the formation of the trapped plasmon, while Ag<sup>+</sup>-induced fluorescence enhancement was owing to the lightning rod effect. The synergism of Cu and Ag was also investigated in this paper as a driving force of the lightning rod effect for the first time. Both the metals (Cu and Ag) were estimated in natural water, justifying the utility of the sensing platform for practical applications. Besides, the evolution of brilliant red color with semi-carbazone for Ag<sup>+</sup> was employed for the colorimetric sensing of Ag<sup>+</sup>.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"739 - 751"},"PeriodicalIF":3.674,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions 一锅水热法绿色合成氮掺杂碳量子点用于单宁酸和 Hg2+ 离子的超灵敏双重检测
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-16 DOI: 10.1007/s13204-024-03036-z
K. Periyarselvam, P. Sivakumar, S. Kanimozhi, R. Elavarasi
{"title":"One-pot hydrothermal method of green-synthesized nitrogen-doped carbon quantum dots for ultra-sensitive dual detection of tannic acid and Hg2+ ions","authors":"K. Periyarselvam,&nbsp;P. Sivakumar,&nbsp;S. Kanimozhi,&nbsp;R. Elavarasi","doi":"10.1007/s13204-024-03036-z","DOIUrl":"10.1007/s13204-024-03036-z","url":null,"abstract":"<div><p>Green-synthesized nitrogen-doped carbon quantum dots (N-CQDs), offering an excellent platform for the ultra-sensitive dual detection of tannic acid and Hg<sup>2+</sup> ions, were explored in this work. The N-CQDs were synthesized in a straightforward, cost-effective, and environmentally friendly hydrothermal method. These N-CQDs exhibited remarkable and dynamic “on-off-on” luminescent characteristics, demonstrating an exceptional sensitivity and selectivity towards tannic acid and Hg<sup>2+</sup> ions. The specific interactions between the N-CQDs and tannic acid, along with the reversible binding with Hg<sup>2+</sup> ions, contribute to the distinct dual-detection capabilities. The sensing system covers a linear concentration range of 10–80 µM to tannic acid and 0.1 to 1 nm for Hg<sup>2+</sup>, showcasing its versatility for different concentration range with a lower detection limit of 25 nM and 3 nM, respectively. Furthermore, the N-CQDs displayed high stability and minimal interference from typical interfering species, making them a desirable tool for environmental monitoring and quality control. Validation through real sample analysis substantiates the accuracy and reliability of the developed sensing approach in practical scenarios. This study not only underscores the promise of green-synthesized N-CQDs as enhanced fluorescence probes but also contributes to the development of efficient and environmentally friendly materials for dual sensing applications.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"649 - 662"},"PeriodicalIF":3.674,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140154380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics 用于可穿戴电子设备的 MXene/纤维素纳米晶体涂层棉织物电极
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03034-1
İnal Kaan Duygun, Ayşe Bedeloğlu
{"title":"MXene/cellulose nanocrystal-coated cotton fabric electrodes for wearable electronics","authors":"İnal Kaan Duygun,&nbsp;Ayşe Bedeloğlu","doi":"10.1007/s13204-024-03034-1","DOIUrl":"10.1007/s13204-024-03034-1","url":null,"abstract":"<div><p>Increasing mechanical properties without losing electrical properties is of great importance for the development of advanced electronic textile products and their use in different areas. In this study, a cost-effective and facile preparation of MXene/cellulose nanocrystal-coated cotton fabrics by drop-casting was carried out to investigate electrical and mechanical properties of plain woven cotton fabrics. MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>) and cellulose nanocrystal dispersions of MXene (5 wt.%, 10 wt.% and 15 wt.% cellulose nanocrystal content) were applied to cotton fabrics, and the coated fabrics were characterized in terms of their morphological and structural properties for their suitability for wearable electronics. The surface resistivity and mechanical properties were also determined to evaluate the effectiveness of coating. Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/cellulose nanocrystal dispersions are suitable to obtain a low electrical resistivity (186.4 Ω/sq) in cotton fabrics. The results also showed that increasing cellulose nanocrystal content results in a more stable coating layer on the cotton fabric and a high tensile (63.2 MPa) and elongation at break values are obtained (30.2%) as a result of that.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"575 - 584"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation 基于蜂胶介导合成过程中 pH 值变化的氧化铜纳米颗粒:结构、光学特性、紫外线阻隔能力和孔雀石绿光降解研究
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-10 DOI: 10.1007/s13204-024-03035-0
Mohammad N. Murshed, Mansour S. Abdul Galil, Samir Osman Mohammed, Mohamed E. El Sayed, Mohyeddine Al‑qubati, Ebkar Abdo Ahmed Saif
{"title":"The study of copper oxide nanoparticles based on the pH varying during propolis-mediated synthesis: structure, optical properties, UV-block ability, and malachite green photodegradation","authors":"Mohammad N. Murshed,&nbsp;Mansour S. Abdul Galil,&nbsp;Samir Osman Mohammed,&nbsp;Mohamed E. El Sayed,&nbsp;Mohyeddine Al‑qubati,&nbsp;Ebkar Abdo Ahmed Saif","doi":"10.1007/s13204-024-03035-0","DOIUrl":"10.1007/s13204-024-03035-0","url":null,"abstract":"<div><p>In third-world countries, the biosynthesis of multi-purpose copper oxide nanoparticles is a crucial solution for pollution, but studies on controlling their properties through internal structure are still limited. This work generated copper oxide nanoparticles (CONPs) using bee propolis as a reducing and capping agent, employing an ecologically benign, simple, inexpensive, and economical technique. The pH of this biosynthesis was varied (6.4, 7.8, 9.2, 10.4, and 11.7). The study computed various structural and optical parameters of biosynthesized CONP samples, revealing nonlinear changes with pH, including unit cell, Cu–O bond length, crystal size, microstrain, energy band gap, Urbach energy, and more. The current research has shown promising results in blocking ultraviolet rays effectively. The blocking parameters were calculated for CONPs samples, and it was found that the pH 8 sample had the best blocking capacity at both regions A and B (90.31 and 91.31%, respectively). The study effectively investigated CONPs’ potential as a catalyst for increasing dye photodegradation. The pH 6.4 sample showed the highest degradation rate (94.15%). The UV-blocking and photodegradation properties of the CONPs samples were explained using the structural and optical parameters.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"585 - 602"},"PeriodicalIF":3.674,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13204-024-03035-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099766","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging 成像新领域:用于多模式成像的天然矿石来源超顺磁性磁铁矿纳米粒子
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-03-08 DOI: 10.1007/s13204-023-02993-1
A. Asha, M. Chamundeeswari, R. Mary Nancy Flora, N. Padmamalini
{"title":"A new frontier in imaging: natural ore-sourced superparamagnetic magnetite nanoparticles for multi-modal imaging","authors":"A. Asha,&nbsp;M. Chamundeeswari,&nbsp;R. Mary Nancy Flora,&nbsp;N. Padmamalini","doi":"10.1007/s13204-023-02993-1","DOIUrl":"10.1007/s13204-023-02993-1","url":null,"abstract":"<div><p>In the ever-evolving field of medical diagnostics and imaging, the development of efficient and versatile contrast agents remains pivotal. This study presents a pioneering approach to synthesize superparamagnetic magnetite nanoparticles (SM-NPs) derived from natural ore using an environmentally friendly, green chemistry approach. These SM-NPs exhibit exceptional magnetic properties, surpassing all other forms of iron oxide, making them a novel and promising multi-imaging agent for various biomedical applications. The SM-NPs were synthesized with high purity from naturally occurring magnetite, sourced from the Earth's crust. Characterization via X-ray diffraction (XRD) confirmed the cubic spinel ferrites structure of the sample, with an average particle size of 21.24 nm. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed the presence of elemental functional groups, further supporting the material's suitability for biomedical use. Morphological analysis using field emission scanning electron microscopy with energy-dispersive X-ray analysis (FESEM-EDX) unveiled agglomerated spherical particles ranging in size from 60 to 80 nm. The elemental composition analysis via EDX demonstrated predominant iron (Fe) and oxygen (O) elements at concentrations of 75.55% and 20.76%, respectively. The magnetic properties of the SMNPs were assessed using a vibrating sample magnetometer (VSM), revealing a superparamagnetic behavior, as evidenced by the M-H plot. Furthermore, X-ray imaging exhibited a significant signal, even with just 40 mg of the substance, suggesting its potential as a robust contrast agent. Complementary findings from computed tomography (CT) and magnetic resonance imaging (MRI) scans demonstrated substantial absorption capabilities, even at relatively low concentrations of SM-NPs. These remarkable attributes position the green-synthesized SM-NPs as a highly versatile and efficient multi-imaging agent for various biomedical applications. This single nanomaterial can revolutionize disease diagnosis, treatment monitoring, and drug delivery within the biomedical field, offering a greener and more effective approach to medical imaging and diagnostics.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 3","pages":"559 - 573"},"PeriodicalIF":3.674,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140073672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信