Applied Nanoscience最新文献

筛选
英文 中文
Author Correction: Enhanced bactericidal action and dye degradation of spicy roots’ extract-incorporated fine-tuned metal oxide nanoparticles 作者更正:辣根提取物中的微调金属氧化物纳米粒子增强了杀菌作用和染料降解能力
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-05-15 DOI: 10.1007/s13204-024-03052-z
A. Haider, M. Ijaz, M. Imran, M. Naz, H. Majeed, J. A. Khan, M. M. Ali, M. Ikram
{"title":"Author Correction: Enhanced bactericidal action and dye degradation of spicy roots’ extract-incorporated fine-tuned metal oxide nanoparticles","authors":"A. Haider, M. Ijaz, M. Imran, M. Naz, H. Majeed, J. A. Khan, M. M. Ali, M. Ikram","doi":"10.1007/s13204-024-03052-z","DOIUrl":"10.1007/s13204-024-03052-z","url":null,"abstract":"","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 10","pages":"1013 - 1014"},"PeriodicalIF":3.674,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140976441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: a comprehensive pathway 不同合成的纳米α-Fe2O3光催化降解孔雀石绿:一种综合途径
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-05-15 DOI: 10.1007/s13204-024-03053-y
R. Kavitha, Jayashree Natesan, K. M. Archana, Revathy Rajagopal
{"title":"Photocatalytic degradation of malachite green over differently synthesized nano-α-Fe2O3: a comprehensive pathway","authors":"R. Kavitha,&nbsp;Jayashree Natesan,&nbsp;K. M. Archana,&nbsp;Revathy Rajagopal","doi":"10.1007/s13204-024-03053-y","DOIUrl":"10.1007/s13204-024-03053-y","url":null,"abstract":"<div><p>Nano-sized amorphous Iron (III) oxides have been a fascinating material for the scientific community owing to their widespread promising application in photocatalysis of water decontamination, due to high specific surface area and variable valency. Malachite green dye is a non-biodegradable organic pollutant known for its toxic effects on humans and aquatic organisms. In the present work, Fe<sub>2</sub>O<sub>3</sub> was synthesized through Citrate–Nitrate Sol–Gel route and Syzygium cumini leaf extract mediated green method. The composition and physical nature of the synthesized iron oxides were confirmed using p-XRD, SEM-EDAX, XPS techniques. A comparative investigation of visible light degradation of malachite green dye was done using differently synthesized Fe<sub>2</sub>O<sub>3</sub> at pH 8. The LCMS study exposed that the sol–gel Fe<sub>2</sub>O<sub>3</sub> was highly efficient in transforming Malachite green (MG) into a no. of intermediates of low molecular weights, whereas green Fe<sub>2</sub>O<sub>3</sub> revealed formation of both high and low molecular weight metabolites. In the light of the evidence derived from LCMS, a pathway has been proposed to highlight the absolute and sequential transformation of the dye to environmentally benign compounds. The study also disclosed the key role played by Iron oxide nanoparticles (IONPs), in the total mineralization of the dye to carbonates and nitrates that can be assimilated by plants and the decontaminated water can be engaged in agricultural practices.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 6","pages":"845 - 873"},"PeriodicalIF":3.674,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140974733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigate synergic effects of nano-Nd2O3 and SiO2 as fertilizer for growth and ostruthin accumulation in Paramignya trimera 研究纳米钕和二氧化硅作为肥料对三尖杉生长和鸵鸟素积累的协同效应
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-05-09 DOI: 10.1007/s13204-024-03046-x
Mai Hung Thanh Tung, Nguyen Thi Lieu, Trinh Ngoc Dat, Vo Thi Trong Hoa, Ngo Kim Khue, Hoang Thu Trang, Truong Thanh Tam, Nguyen Thi Phuong Le Chi, Nguyen Thi Mong Diep, Cao Van Hoang
{"title":"Investigate synergic effects of nano-Nd2O3 and SiO2 as fertilizer for growth and ostruthin accumulation in Paramignya trimera","authors":"Mai Hung Thanh Tung,&nbsp;Nguyen Thi Lieu,&nbsp;Trinh Ngoc Dat,&nbsp;Vo Thi Trong Hoa,&nbsp;Ngo Kim Khue,&nbsp;Hoang Thu Trang,&nbsp;Truong Thanh Tam,&nbsp;Nguyen Thi Phuong Le Chi,&nbsp;Nguyen Thi Mong Diep,&nbsp;Cao Van Hoang","doi":"10.1007/s13204-024-03046-x","DOIUrl":"10.1007/s13204-024-03046-x","url":null,"abstract":"<div><p>The study successfully synthesized nano-SiO<sub>2</sub> and Nd<sub>2</sub>O<sub>3</sub> materials applying as fertilizers for growth of the <i>Paramignya trimera</i> (Oliv.) Guill. (Rutaceae), a well-known medicinal plant in Vietnam and Thailand for treatment of numerous cancers. The cultivation results indicated that the individual uses of nano-SiO<sub>2</sub> and Nd<sub>2</sub>O<sub>3</sub>, respectively, induced stem and root growth of the <i>P. trimera</i>. Therefore, applications of nano-Nd<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> mixture exhibited synergic effects to greatly enhance stem and root growth of the <i>P. trimera</i>. The plant height, root length, stem and root weight of the mixture Nd<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> exposed plant were greatly higher than those of the individual nano-material exposed plants. The extraction experiments indicated that ostruthin, a valuable medicinal substance, accumulated in the roots of the <i>P. trimera</i> rather than in its stems. The ostruthin content in the root of the Nd<sub>2</sub>O<sub>3</sub> exposed <i>P. trimera</i> was also greatly higher than those in the control and SiO<sub>2</sub>-exposed plants. This indicated that the Nd<sub>2</sub>O<sub>3</sub> nano-materials not only induced root growth but also aided the accumulation of ostruthin in the roots of the <i>P. trimera</i>. This open new era on combination application of nano-SiO<sub>2</sub> and Nd<sub>2</sub>O<sub>3</sub> for growth of the <i>P. Trimera</i> as well as other medicinal plants.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 6","pages":"835 - 843"},"PeriodicalIF":3.674,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of green synthesis of ZnO nanoparticles using fig leaves on Saos-2, SK-OV3 and PC3 tumor cell line 用无花果叶绿色合成氧化锌纳米颗粒对 Saos-2、SK-OV3 和 PC3 肿瘤细胞系的影响
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-05-08 DOI: 10.1007/s13204-024-03051-0
Wafaa Mahdi Saleh, Nadia Jasim Ghdeeb, Fatin Fadhel Kazzaz, Haider A Kadhum
{"title":"Impact of green synthesis of ZnO nanoparticles using fig leaves on Saos-2, SK-OV3 and PC3 tumor cell line","authors":"Wafaa Mahdi Saleh,&nbsp;Nadia Jasim Ghdeeb,&nbsp;Fatin Fadhel Kazzaz,&nbsp;Haider A Kadhum","doi":"10.1007/s13204-024-03051-0","DOIUrl":"10.1007/s13204-024-03051-0","url":null,"abstract":"<div><p>Recent research has focused on zinc oxide nanoparticles (ZnO NPs) in culture and in vivo cell lines due to their cytotoxic potential. In addition, ZnO has garnered considerable interest in cancer therapy. Our objective was to assess the cytotoxicity of ZnO NPs on cell lines from the ovary, prostate, and bone (SK-OV-3, PC3, and Saos-2). ZnO nanoparticles were used to culture SK-OV-3, PC3, and Saos-2 cancer cells at concentrations of 0, 20, 40, 80, 160, and 320 ppm. Cancer cells were subsequently incubated for 24 and 48 h. Using the MTT assay, the apoptosis and cytotoxicity of cells were quantified. ZnO NPs of both diameters exhibited cytotoxic properties. Regardless of the lowest concentration, the extent of the cytotoxic effect on apoptosis is 32.55 nm. A rise in ZnO NP concentration was associated with an increase in apoptosis and a decrease in viability. The findings of this study suggest that the examined cancer types exhibited cytotoxic effects upon exposure to ZnO NPs, as compared to the control group that was not exposed. Furthermore, the maximum cytotoxic effects were observed at higher concentrations. It seems that the observed increase in cytotoxicity may not be significantly altered.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 6","pages":"827 - 833"},"PeriodicalIF":3.674,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step method to simultaneously grow TiO2 compact and porous layers for DSSC photoelectrodes 一步法同时生长用于 DSSC 光电极的 TiO2 致密层和多孔层
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-26 DOI: 10.1007/s13204-024-03050-1
A. I. Espinoza Duarte, A. L. Leal Cruz, A. Vera Marquina, J. A. Aguilar Martínez, A. Garcia Juárez, C. Zúñiga Islas
{"title":"One-step method to simultaneously grow TiO2 compact and porous layers for DSSC photoelectrodes","authors":"A. I. Espinoza Duarte,&nbsp;A. L. Leal Cruz,&nbsp;A. Vera Marquina,&nbsp;J. A. Aguilar Martínez,&nbsp;A. Garcia Juárez,&nbsp;C. Zúñiga Islas","doi":"10.1007/s13204-024-03050-1","DOIUrl":"10.1007/s13204-024-03050-1","url":null,"abstract":"<div><p>The growing demand for alternative energy sources has driven significant developments in novel device designs that generate energy through light conversion. Among the different types of solar cells, dye-sensitized solar cells (DSSCs) have emerged as one of the most promising options due to their potential to approach theoretical efficiencies of up to 46%. Although current real-world efficiencies typically range from 10 to 14% that generates numerous opportunity areas for DSSC improvement through different strategies, including the development of innovative solar cell structures, new growth or synthesis processes, and the integration of novel oxide materials. Titanium dioxide is one of the most significant oxide semiconductors and its interest has notably increased in recent years due to its unique optoelectronic properties and its applications in dye-sensitized solar cells (DSSCs). In DSSCs, photoelectrodes play a vital role in photoconversion. Photoelectrodes for DSSCs require blocking and porous oxide semiconductor layers to prevent electron leakage and enhance efficiency. Typically, these layers are produced through various techniques and steps, complicating the fabrication process and extending processing times. Therefore, in this work, we propose a one-step method to simultaneously grow TiO<sub>2</sub>-blocking and porous layers for DSSC photoelectrodes at relatively low temperatures. Characterization results using FESEM/EDS, XRD, and UV–visible spectroscopy confirm the growth of both compact and porous layers. These layers are composed of the anatase particulate deposits (100–200 nm) with acceptable grain sizes (17.3–84.1 nm) and exhibit a suitable band gap (3.14 eV). Finally, TiO<sub>2</sub> films were applied in DSSCs as photoelectrodes and showed promising performance in solar cell prototypes.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"819 - 826"},"PeriodicalIF":3.674,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140805388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bio-reticulation of Pd nanorods enables catalytic treatment of various cloth dyes 钯纳米棒的生物网状结构可催化处理各种织物染料
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-23 DOI: 10.1007/s13204-024-03047-w
G. Mahalakshmi, K. Elangovan, S. Mohan, Natarajan Arumugam, Abdulrahman I. Almansour
{"title":"Bio-reticulation of Pd nanorods enables catalytic treatment of various cloth dyes","authors":"G. Mahalakshmi,&nbsp;K. Elangovan,&nbsp;S. Mohan,&nbsp;Natarajan Arumugam,&nbsp;Abdulrahman I. Almansour","doi":"10.1007/s13204-024-03047-w","DOIUrl":"10.1007/s13204-024-03047-w","url":null,"abstract":"<div><p>A sustainable approach for the manufacture of palladium (Pd) nanoparticles utilizing <i>Morinda citrifolia</i> leaf extract was established. The topological, crystallographic, and composition and structure of a UV–Vis spectrophotometer have been utilized to evaluate the generated nanoparticles, TEM, XRD, and FTIR investigations. The created nanoparticles underwent additional testing to see how well they removed the dyes rhodamine 6G (Rh-6 G), methyl orange, and Congo red. The generated Pd nanorods fully decolored nearly 99.9% of the Rh-6G dye in about 10 min. Greener fabrication for metallic nanoparticles has regularly been established, and cleaner and more effective nanorods for pollutant remediation have also been created. This study reveals the environmentally friendly synthesis of Pd NRs and its uses in environmental remediation.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"807 - 818"},"PeriodicalIF":3.674,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140668451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental and DFT insights into optical and magnetic studies of graphene oxide/ZnFe2O4 nanocomposites for enhanced photodegradation 氧化石墨烯/ZnFe2O4 纳米复合材料用于增强光降解的光学和磁学研究的实验和 DFT 见解
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-09 DOI: 10.1007/s13204-024-03048-9
G. Nandhini, D. Vignesh, M. K. Shobana, S. Kavita, T. Pazhanivel
{"title":"Experimental and DFT insights into optical and magnetic studies of graphene oxide/ZnFe2O4 nanocomposites for enhanced photodegradation","authors":"G. Nandhini,&nbsp;D. Vignesh,&nbsp;M. K. Shobana,&nbsp;S. Kavita,&nbsp;T. Pazhanivel","doi":"10.1007/s13204-024-03048-9","DOIUrl":"10.1007/s13204-024-03048-9","url":null,"abstract":"<div><p>Functional nanoferrites are attracting interest in photocatalytic applications due to their intriguing and excellent optical and magnetic properties. In that order, as suitable adsorbents for wastewater treatment, graphene-based nanoferrites can be tuned. In this article, ZnFe<sub>2</sub>O<sub>4</sub>/GO nanocomposites have been prepared to study the structural, optical, magnetic, and photocatalytic properties through investigational (experimental) results and theoretical insights. Further, the synthesized nanocomposites fall under the mesoporous range with an average crystalline size of around 15–18 nm with good colloidal stability. Spherically agglomerated morphology has been observed by FE-SEM analysis. Magnetic characterizations were done by vibrating sample magnetometer (VSM) with superparamagnetic behavior at room temperature (RT). Optical insights reveal that the samples exhibit good photocatalytic properties with a degradation rate of 85.8% with methylene blue (MB) organic pollutant. Hence, this article aims to study the properties of prepared ZnFe<sub>2</sub>O<sub>4</sub>/GO nanocomposites through a detailed theoretical discussion of density functional theory (DFT).</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"793 - 806"},"PeriodicalIF":3.674,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Functionalization of niobium nitrogen-doped titanium dioxide (TiO2) nanoparticles by using Mucuna pruriens methanolic extracts 利用毛果芸香科植物甲醇提取物对掺氮铌二氧化钛 (TiO2) 纳米粒子进行功能化处理
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-09 DOI: 10.1007/s13204-024-03038-x
Muhammad Awais Farooqi, Theophilus Bhatti, Ghayas Uddin Siddiqui, Young Sun Mok, Hafiz Muhammad Umer Farooqi, Farzana Kausar, Chul Ung Kang
{"title":"Functionalization of niobium nitrogen-doped titanium dioxide (TiO2) nanoparticles by using Mucuna pruriens methanolic extracts","authors":"Muhammad Awais Farooqi,&nbsp;Theophilus Bhatti,&nbsp;Ghayas Uddin Siddiqui,&nbsp;Young Sun Mok,&nbsp;Hafiz Muhammad Umer Farooqi,&nbsp;Farzana Kausar,&nbsp;Chul Ung Kang","doi":"10.1007/s13204-024-03038-x","DOIUrl":"10.1007/s13204-024-03038-x","url":null,"abstract":"<div><p>Titanium dioxide nanoparticles (TiO<sub>2</sub> NPs) have garnered considerable attention due to their diverse applications. Introducing niobium (Nb) and nitrogen (N) doping, followed by functionalization with <i>Mucuna pruriens</i> beans methanolic extracts, offers a novel avenue to harness their antioxidant potential. This functionalization enables Nb-N doped TiO<sub>2</sub> NPs to engage with the bioactive compounds inherent to <i>M. pruriens</i> beans methanolic extracts, thereby fostering a synergistic enhancement of antioxidant activity. This study focuses on the functionalization of doped Nb-N-TiO<sub>2</sub> NPs and evaluates the antioxidative capabilities of those functionalized NPs to pure doped Nb-N-TiO<sub>2</sub> NPs. These functionalized NPs (FNb-N-TiO<sub>2</sub>) underwent characterization through ultraviolet–visible spectroscopy (UV–Vis), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning electron microscopy (SEM) analysis. Subsequently, their antioxidant capabilities were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and Ferric Reducing Antioxidant Power Assay (FRAP) assays. Functionalized Nb-N-TiO<sub>2</sub> NPs FTIR peaks exhibited at 2430 and 2010 cm<sup>−1</sup>; unrelated peak vibrations are associated with the (Nb-N) doping, and the increased transmittance signifies successful functionalization and potential bonding between <i>M. pruriens</i> extract phytochemicals. A distinctive triangular aggregation pattern in SEM ranging in size from 5 µm to 500 nm was seen in FNb-N-TiO<sub>2</sub>. At a concentration of 500 μL<sup>−1</sup>, FNb-N-TiO<sub>2</sub> exhibited exceptionally high antioxidant activity, reaching an impressive 70% compared with pure Nb-N-TiO<sub>2</sub> NPs at 51%. The results demonstrated that FNb-N-TiO<sub>2</sub> NPs exhibit significant antioxidant properties compared to their non-functionalized, pure Nb-N-TiO<sub>2</sub> NPs. In conclusion, this study substantiates the considerable antioxidant potential of doped Nb-N-TiO<sub>2</sub> NPs mediated by <i>M. pruriens</i> methanolic extract, thereby emphasizing their potential for diverse applications in both biomedical and environmental sciences.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 4","pages":"663 - 674"},"PeriodicalIF":3.674,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic enhancement of photogenerated charge transfer: tailoring optical and electrical properties of PbS:rGO solution processed hybrids 光生电荷转移的协同增强:定制 PbS:rGO 溶液加工混合物的光学和电学特性
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-05 DOI: 10.1007/s13204-024-03044-z
Jose M. Chavarria-Martinez, Jaquelin M. Contero-Castillo, Diana F. Garcia-Gutierrez, Domingo I. Garcia-Gutierrez
{"title":"Synergistic enhancement of photogenerated charge transfer: tailoring optical and electrical properties of PbS:rGO solution processed hybrids","authors":"Jose M. Chavarria-Martinez,&nbsp;Jaquelin M. Contero-Castillo,&nbsp;Diana F. Garcia-Gutierrez,&nbsp;Domingo I. Garcia-Gutierrez","doi":"10.1007/s13204-024-03044-z","DOIUrl":"10.1007/s13204-024-03044-z","url":null,"abstract":"<div><p>Nanostructured materials have significantly influenced numerous scientific and technological areas, mainly due to the tuneability of their optical and electrical properties. When working with quantum dots (QDs)-based thin films, the high prevalence of trap states and low conductivity has been a remarkable challenge, which has been addressed by the fabrication of hybrid materials. However, on the road to improving their properties, fabrication of nanostructured hybrid materials, especially when involving 2D nanomaterials, still poses a challenging task, particularly when solution-processed approaches are considered. In the current work, the fabrication of a solution-processed QDs-2D nanomaterial hybrid, comprising PbS QDs and thermally reduced graphene oxide (rGO) is discussed. This study explores the nanostructured hybrid material's behavior when varying the weight percent ratio between the constituents, revealing a substantial impact of this parameter on the optoelectronic properties of the resulting hybrid material; particularly affecting the photogenerated charge carrier transfer, charge carrier mobility, charge carrier concentration and resistivity. Physical characterization of the hybrid material revealed a dramatic change in the interaction between the PbS QDs and the rGO as the weight percent of rGO increased in the hybrid material, showing a clear reduction of PbS QDs coverage on rGO’s surface, which also produced an increment in the signals related to the oxidation of PbS QDs and rGO. The sample with 5% wt. of rGO showed optimal optoelectronic properties for possible applications in photodetector technologies or solar cells, displaying a high photogenerated current with a charge carrier mobility, charge carrier concentration, and resistivity of approximately 2.26 cm<sup>2</sup>/V-s, 1.27 × 10<sup>14</sup> cm<sup>−3</sup> and 2.18 × 10<sup>4</sup> Ω-cm, respectively. These findings serve as a foundational basis for the development of efficient optoelectronic devices based on this type of nanostructured hybrid material.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"777 - 791"},"PeriodicalIF":3.674,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green, affordable, and unprecedented photoluminescence investigation on white emission of Y2O3:Clitoria ternatea floral extract complex to replace conventional Dy3+ doping for wLED 以绿色、经济、前所未有的光致发光方法研究 Y2O3:Clitoria ternatea 花提取物复合物的白光发射,取代传统的 Dy3+ 掺杂用于 wLED
IF 3.674 4区 工程技术
Applied Nanoscience Pub Date : 2024-04-04 DOI: 10.1007/s13204-024-03043-0
V. P. Veena, Namitha Mohan, T. Sruthi, K. M. Nissamudeen
{"title":"Green, affordable, and unprecedented photoluminescence investigation on white emission of Y2O3:Clitoria ternatea floral extract complex to replace conventional Dy3+ doping for wLED","authors":"V. P. Veena,&nbsp;Namitha Mohan,&nbsp;T. Sruthi,&nbsp;K. M. Nissamudeen","doi":"10.1007/s13204-024-03043-0","DOIUrl":"10.1007/s13204-024-03043-0","url":null,"abstract":"<div><p>The spectroscopic characteristics of the common flower <i>Clitoria ternatea</i> are explored for the first time. When excited, the extract shows two emission crests at 436 and 663 nm corresponding to anthocyanin delphinidin and betalains betacyanin, respectively. For practical utility, the extract is made into thin films, giving a broad emission band from 450 to 530 nm. But by this line, the luminescence spectra showed a falloff with time, through a decay rate of 0.2463 cps/h owing to aging. An anti-oxidizing agent (Y<sub>2</sub>O<sub>3</sub>)–extract complexes with different extract concentrations (1–5 ml) under different heating conditions (100–200 °C) are produced to overcome this scenario. The XRD and Raman spectra depict the fruitful complex formation in cubic structure with space group <i>Ia3</i>. Using UV–visible info, the bandgap is computed to be 2.381 eV. When Y<sub>2</sub>O<sub>3</sub> and Clitoria extract are taken in the same measure, decent emission bands around 450–550 nm and 630–690 nm are observed by the FRET mechanism; giving a ninefold increment in PL intensity with CIE coordinates in the vicinity of near-white light. The trials are repeated numerous times to ensure reproducibility and the outcomes are compared with the conventional Y<sub>2</sub>O<sub>3</sub>:Dy<sup>3+</sup>-doped system, showing prime results by the Y<sub>2</sub>O<sub>3</sub>:Clitoria complex (1:1, 100 °C). This unprecedented investigation concludes the enhanced photoluminescence from Clitoria extract, which could replace conventional rare earth doping and provide a novel methodology for designing and fabricating lighting devices.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 5","pages":"761 - 770"},"PeriodicalIF":3.674,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140581139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信