V. P. Veena, K. Vini, S. S. Ancy, K. M. Nissamudeen
{"title":"用于潜在发光二极管应用的 100% 纯朱砂发光 Y2O3:Sm3+, Gd3+ 的结构、光学和下转换特性","authors":"V. P. Veena, K. Vini, S. S. Ancy, K. M. Nissamudeen","doi":"10.1007/s13204-024-03074-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study focuses on the facile combustion synthesis of highly luminescent Y<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup>, Gd<sup>3+</sup> nanophosphors, bringing down the thermal budget to a minimum of 500 K. When Sm<sup>3+</sup> ions are doped in the Y<sub>2</sub>O<sub>3</sub> cubic crystal system of bandgap 5.6 eV and studied under a down-conversion excitation of 260 nm, the emission spectra offered an intense vermilion color at 608 nm due to the <sup>4</sup>G<sub>5/2</sub> → <sup>6</sup>H<sub>7/2</sub> transition within the Sm<sup>3+</sup> ions. The Y<sub>2</sub>O<sub>3</sub>:2wt%Sm<sup>3+</sup> matrix is co-doped with 3wt%Gd<sup>3+</sup>, highlighting 100% pure vermilion emission 4.21 times higher than doped samples, which is a perfect choice for domestic lightening owing to better eye compatibility. Further, post-annealing is performed to improve the structural parameters and luminescence properties, creating sufficient alterations in the crystal lattice. It is professed that Y<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup>, Gd<sup>3+</sup> nanophosphors can be effectively used in optoelectronic devices, owing to their enhanced crystallinity and photoluminescence properties resulting from the Gd<sup>3+</sup> → Sm<sup>3+</sup> energy transfer efficiency of 75.15%.</p></div>","PeriodicalId":471,"journal":{"name":"Applied Nanoscience","volume":"14 12","pages":"1157 - 1170"},"PeriodicalIF":3.6740,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, optical, and down-conversion properties of 100% pure vermilion-emitting Y2O3:Sm3+, Gd3+ for latent wLED applications\",\"authors\":\"V. P. Veena, K. Vini, S. S. Ancy, K. M. Nissamudeen\",\"doi\":\"10.1007/s13204-024-03074-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focuses on the facile combustion synthesis of highly luminescent Y<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup>, Gd<sup>3+</sup> nanophosphors, bringing down the thermal budget to a minimum of 500 K. When Sm<sup>3+</sup> ions are doped in the Y<sub>2</sub>O<sub>3</sub> cubic crystal system of bandgap 5.6 eV and studied under a down-conversion excitation of 260 nm, the emission spectra offered an intense vermilion color at 608 nm due to the <sup>4</sup>G<sub>5/2</sub> → <sup>6</sup>H<sub>7/2</sub> transition within the Sm<sup>3+</sup> ions. The Y<sub>2</sub>O<sub>3</sub>:2wt%Sm<sup>3+</sup> matrix is co-doped with 3wt%Gd<sup>3+</sup>, highlighting 100% pure vermilion emission 4.21 times higher than doped samples, which is a perfect choice for domestic lightening owing to better eye compatibility. Further, post-annealing is performed to improve the structural parameters and luminescence properties, creating sufficient alterations in the crystal lattice. It is professed that Y<sub>2</sub>O<sub>3</sub>:Sm<sup>3+</sup>, Gd<sup>3+</sup> nanophosphors can be effectively used in optoelectronic devices, owing to their enhanced crystallinity and photoluminescence properties resulting from the Gd<sup>3+</sup> → Sm<sup>3+</sup> energy transfer efficiency of 75.15%.</p></div>\",\"PeriodicalId\":471,\"journal\":{\"name\":\"Applied Nanoscience\",\"volume\":\"14 12\",\"pages\":\"1157 - 1170\"},\"PeriodicalIF\":3.6740,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Nanoscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13204-024-03074-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Nanoscience","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13204-024-03074-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
Structural, optical, and down-conversion properties of 100% pure vermilion-emitting Y2O3:Sm3+, Gd3+ for latent wLED applications
This study focuses on the facile combustion synthesis of highly luminescent Y2O3:Sm3+, Gd3+ nanophosphors, bringing down the thermal budget to a minimum of 500 K. When Sm3+ ions are doped in the Y2O3 cubic crystal system of bandgap 5.6 eV and studied under a down-conversion excitation of 260 nm, the emission spectra offered an intense vermilion color at 608 nm due to the 4G5/2 → 6H7/2 transition within the Sm3+ ions. The Y2O3:2wt%Sm3+ matrix is co-doped with 3wt%Gd3+, highlighting 100% pure vermilion emission 4.21 times higher than doped samples, which is a perfect choice for domestic lightening owing to better eye compatibility. Further, post-annealing is performed to improve the structural parameters and luminescence properties, creating sufficient alterations in the crystal lattice. It is professed that Y2O3:Sm3+, Gd3+ nanophosphors can be effectively used in optoelectronic devices, owing to their enhanced crystallinity and photoluminescence properties resulting from the Gd3+ → Sm3+ energy transfer efficiency of 75.15%.
期刊介绍:
Applied Nanoscience is a hybrid journal that publishes original articles about state of the art nanoscience and the application of emerging nanotechnologies to areas fundamental to building technologically advanced and sustainable civilization, including areas as diverse as water science, advanced materials, energy, electronics, environmental science and medicine. The journal accepts original and review articles as well as book reviews for publication. All the manuscripts are single-blind peer-reviewed for scientific quality and acceptance.