ACTA SCIENTIARUM MATHEMATICARUM最新文献

筛选
英文 中文
Inequalities for functions of (2times 2) block matrices 块矩阵函数的不等式
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-04-13 DOI: 10.1007/s44146-023-00082-x
Fadi Alrimawi
{"title":"Inequalities for functions of (2times 2) block matrices","authors":"Fadi Alrimawi","doi":"10.1007/s44146-023-00082-x","DOIUrl":"10.1007/s44146-023-00082-x","url":null,"abstract":"<div><p>Let <span>(T=left[ begin{array}{cc} T_{11} &amp;{} T_{12} T_{21} &amp;{} T_{22} end{array} right] )</span> be accretive-dissipative, where <span>(T_{11},T_{12},T_{21},)</span> and <span>(T_{22} )</span> are <span>(ntimes n)</span> complex matrices. Let <i>f</i> be a non-negative function on <span>( [0,infty ))</span> such that <span>(f(0)=0)</span>, and let <span>(alpha ,beta in (0,1))</span> such that <span>(alpha +beta =1)</span>. For every unitarily invariant norm <span>(left| left| left| cdot right| right| right| )</span>, it is shown that </p><div><div><span>$$begin{aligned} sum _{j=1}^{2}left| left| left| fleft( frac{left| T_{jj}+(2alpha -1)T_{jj}^{*}right| }{2sqrt{2}}right) +fleft( sqrt{frac{alpha beta }{2}}left| T_{jj}^{*}right| right) right| right| right| le 2max (alpha ,beta )left| left| left| f(left| Tright| )right| right| right| end{aligned}$$</span></div></div><p>whenever <span>(trightarrow fleft( sqrt{t}right) )</span> is convex and </p><div><div><span>$$begin{aligned} sum _{j=1}^{2}left| left| left| alpha fleft( frac{ left| T_{jj}+(2alpha -1)T_{jj}^{*}right| }{sqrt{2alpha }} right) +beta fleft( sqrt{2alpha }left| T_{jj}^{*}right| right) right| right| right| le 4left| left| left| fleft( sqrt{ max (alpha ,beta )}left| Tright| right) right| right| right| end{aligned}$$</span></div></div><p>whenever <i>f</i> is concave.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"23 - 33"},"PeriodicalIF":0.5,"publicationDate":"2023-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50476955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Certain Bernstein-type (L_p) inequalities for polynomials 多项式的某些bernstein型$$L_p$$ L p不等式
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-04-12 DOI: 10.1007/s44146-023-00074-x
N. A. Rather, Aijaz Bhat, Suhail Gulzar
{"title":"Certain Bernstein-type (L_p) inequalities for polynomials","authors":"N. A. Rather,&nbsp;Aijaz Bhat,&nbsp;Suhail Gulzar","doi":"10.1007/s44146-023-00074-x","DOIUrl":"10.1007/s44146-023-00074-x","url":null,"abstract":"<div><p>Let <i>P</i>(<i>z</i>) be a polynomial of degree <i>n</i>, then it is known that for <span>(alpha in {mathbb {C}})</span> with <span>(|alpha |le frac{n}{2},)</span></p><div><div><span>$$begin{aligned} underset{|z|=1}{max }|left| zP^{prime }(z)-alpha P(z)right| le left| n-alpha right| underset{|z|=1}{max }|P(z)|. end{aligned}$$</span></div></div><p>This inequality includes Bernstein’s inequality, concerning the estimate for <span>(|P^prime (z)|)</span> over <span>(|z|le 1,)</span> as a special case. In this paper, we extend this inequality to <span>(L_p)</span> norm which among other things shows that the condition on <span>(alpha )</span> can be relaxed. We also prove similar inequalities for polynomials with restricted zeros.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"545 - 557"},"PeriodicalIF":0.5,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75038686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unitarily invariant norms on finite von Neumann algebras 有限von Neumann代数上的酉不变范数
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-04-03 DOI: 10.1007/s44146-023-00075-w
Haihui Fan, Don Hadwin
{"title":"Unitarily invariant norms on finite von Neumann algebras","authors":"Haihui Fan,&nbsp;Don Hadwin","doi":"10.1007/s44146-023-00075-w","DOIUrl":"10.1007/s44146-023-00075-w","url":null,"abstract":"<div><p>We give a characterization of all the unitarily invariant norms on a finite von Neumann algebra acting on a separable Hilbert space. The characterization is analogous to von Neumann’s characterization for the <span>(ntimes n)</span> complex matrices and the characterization in Fang et al. (J Funct Anal 255(1):142–183, 2008) for <span>(II_{1})</span> factors.\u0000</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"449 - 499"},"PeriodicalIF":0.5,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87988509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyticity, rank one perturbations and the invariance of the left spectrum 分析性,一级扰动和左谱的不变性
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-04-01 DOI: 10.1007/s44146-023-00076-9
Sameer Chavan, Soumitra Ghara, Paramita Pramanick
{"title":"Analyticity, rank one perturbations and the invariance of the left spectrum","authors":"Sameer Chavan,&nbsp;Soumitra Ghara,&nbsp;Paramita Pramanick","doi":"10.1007/s44146-023-00076-9","DOIUrl":"10.1007/s44146-023-00076-9","url":null,"abstract":"<div><p>We discuss the question of the analyticity of a rank one perturbation of an analytic operator. If <span>({mathscr {M}}_z)</span> is the bounded operator of multiplication by <i>z</i> on a functional Hilbert space <span>({mathscr {H}}_kappa )</span> and <span>(f in {mathscr {H}})</span> with <span>(f(0)=0,)</span> then <span>({mathscr {M}}_z + f otimes 1)</span> is always analytic. If <span>(f(0) ne 0,)</span> then the analyticity of <span>({mathscr {M}}_z + f otimes 1)</span> is characterized in terms of the membership to <span>({mathscr {H}}_kappa )</span> of the formal power series obtained by multiplying <i>f</i>(<i>z</i>) by <span>(frac{1}{f(0)-z}.)</span> As an application, we discuss the problem of the invariance of the left spectrum under rank one perturbation. In particular, we show that the left spectrum <span>(sigma _l(T + f otimes g))</span> of the rank one perturbation <span>(T + f otimes g,)</span> <span>(,g in ker (T^*),)</span> of a cyclic analytic left invertible bounded linear operator <i>T</i> coincides with the left spectrum of <i>T</i> except the point <span>(langle {f},,{g} rangle .)</span> In general, the point <span>(langle {f},,{g} rangle )</span> may or may not belong to <span>(sigma _l(T + f otimes g).)</span> However, if it belongs to <span>(sigma _l(T + f otimes g) backslash {0},)</span> then it is a simple eigenvalue of <span>(T + f otimes g)</span>.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"559 - 571"},"PeriodicalIF":0.5,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89278620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beurling’s theorem for the Hardy operator on (L^2[0,1]) $$L^2[0,1]$$ l2上Hardy算子的Beurling定理[0]
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-18 DOI: 10.1007/s44146-023-00073-y
Jim Agler, John E. McCarthy
{"title":"Beurling’s theorem for the Hardy operator on (L^2[0,1])","authors":"Jim Agler,&nbsp;John E. McCarthy","doi":"10.1007/s44146-023-00073-y","DOIUrl":"10.1007/s44146-023-00073-y","url":null,"abstract":"<div><p>We prove that the invariant subspaces of the Hardy operator on <span>(L^2[0,1])</span> are the spaces that are limits of sequences of finite dimensional spaces spanned by monomial functions.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"573 - 592"},"PeriodicalIF":0.5,"publicationDate":"2023-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80210720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Representations of generalized Hardy functions in Beurling’s tempered distributions 广义Hardy函数在beurling缓律分布中的表示
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-16 DOI: 10.1007/s44146-023-00061-2
Byung Keun Sohn
{"title":"Representations of generalized Hardy functions in Beurling’s tempered distributions","authors":"Byung Keun Sohn","doi":"10.1007/s44146-023-00061-2","DOIUrl":"10.1007/s44146-023-00061-2","url":null,"abstract":"<div><p>Let <i>B</i> be a proper open subset in <span>({{mathbb {R}}}^N)</span> and <i>C</i> be a regular cone in <span>({{mathbb {R}}}^N)</span>. On our previous paper of Acta Scientiarum Mathematicarum 85, 595–611 (2019), we have defined the space of generalized Hardy functions, <span>(G_{omega ^*,A}^p(T^B))</span>, <span>(1&lt; p le 2,)</span> and <span>(A ge 0)</span>, and have shown that the functions in <span>(G_{omega ^*,A}^p(T^B))</span> have distributional boundary values in the weak topology of Beurling tempered distributions, <span>({mathcal {S}}_{(omega )}^prime )</span>. In this paper we show that if the distributional boundary values are convolutors in Beurling ultradistributions of <span>(L_2)</span>-growth, then the functions in <span>(G_{omega ^*,0}^p(T^C))</span>, <span>(1&lt; p le 2,)</span> can be represented as Cauchy and Poisson integral of the boundary values in <span>({mathcal {S}}_{(omega )}^prime )</span>.\u0000</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"413 - 425"},"PeriodicalIF":0.5,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80171686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the perturbation of pseudo-generalized invertible operators 伪广义可逆算子的摄动
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-06 DOI: 10.1007/s44146-023-00068-9
Asma Lahmar, Haïkel Skhiri
{"title":"On the perturbation of pseudo-generalized invertible operators","authors":"Asma Lahmar,&nbsp;Haïkel Skhiri","doi":"10.1007/s44146-023-00068-9","DOIUrl":"10.1007/s44146-023-00068-9","url":null,"abstract":"<div><p>This paper is a continuation of previous works Lahmar (Filomat 36:2551-2572, 2022), Lahmar (Filomat 36: 4575–4590, 2022), Lahmar (Preprint) where we defined a new class of operators called pseudo-generalized invertible operators that includes both the set of generalized invertible operators and the set of Drazin invertible operators. Here we focus essentially on the perturbation problem of pseudo-generalized invertible operators and the particular case of DPG invertibility.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 3-4","pages":"389 - 411"},"PeriodicalIF":0.5,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77643666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial isometries and generalized inverses of linear relations 线性关系的偏等距与广义逆
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-05 DOI: 10.1007/s44146-023-00067-w
Zied Garbouj
{"title":"Partial isometries and generalized inverses of linear relations","authors":"Zied Garbouj","doi":"10.1007/s44146-023-00067-w","DOIUrl":"10.1007/s44146-023-00067-w","url":null,"abstract":"<div><p>For a closed linear relation everywhere defined on a Hilbert space the concepts of isometry, co-isometry, partial isometry, and generalized inverse are introduced and studied. Part of the results proved in this paper improve and generalize some results known for these concepts. In particular, we extend those of [Acta Sci. Math. (Szeged), 70 (2004), 767–781] and [Studia Math. 205 (2011), no. 1, 71–82].</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"293 - 315"},"PeriodicalIF":0.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00067-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50453088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Some best approximation theorems and best proximity point theorems 一些最佳逼近定理和最佳邻近点定理
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-05 DOI: 10.1007/s44146-023-00065-y
S. Sadiq Basha
{"title":"Some best approximation theorems and best proximity point theorems","authors":"S. Sadiq Basha","doi":"10.1007/s44146-023-00065-y","DOIUrl":"10.1007/s44146-023-00065-y","url":null,"abstract":"<div><p>A best approximation theorem for almost cyclic contractions has been proved in the recent article (Sadiq Basha in J. Fixed Point Theory Appl 23:32, 2021). The purpose of this note is to show that, with the same hypotheses as in the preceding best approximation theorem, the conclusion of the theorem can be strengthened to produce a best proximity point rather than a best approximation and hence a best proximity point theorem for almost cyclic contractions in the framework of a uniformly convex Banach space. Further, it is interesting to observe that such a best proximity point theorem for almost cyclic contractions generalizes/subsumes the well known best proximity point theorem, due to Eldred and Veeramani (J Math Anal Appl 323:1001–1006, 2006), for cyclic contractions in the framework of a uniformly convex Banach space. On the other hand, these best approximation theorems and best proximity point theorems for some types of contractions do not generalize the most elegant Banach’s contraction principle because of the underlying richer framework of a uniformly convex Banach space rather than a simpler framework like a complete metric space. Therefore, the purpose of this note is to bring forth the framework of utmost complete space and establish a best proximity point theorem for almost cyclic contractions in such a simpler framework, thereby generalizing the contraction principle.\u0000</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"215 - 226"},"PeriodicalIF":0.5,"publicationDate":"2023-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s44146-023-00065-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50452956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On some questions for the q-integration operator 关于q-积分算子的几个问题
IF 0.5
ACTA SCIENTIARUM MATHEMATICARUM Pub Date : 2023-03-04 DOI: 10.1007/s44146-023-00064-z
Mubariz T. Garayev
{"title":"On some questions for the q-integration operator","authors":"Mubariz T. Garayev","doi":"10.1007/s44146-023-00064-z","DOIUrl":"10.1007/s44146-023-00064-z","url":null,"abstract":"<div><p>We use the <i>q</i>-Duhamel product to provide a Banach algebra structure to some closed subspaces of the Wiener disk- algebra <span>(W_{+}left( mathbb {D}right) )</span> of analytic functions on the unit disk <span>(mathbb {D})</span> of the complex plane <span>(mathbb {C.})</span> We study the <i>q</i>-integration operator on <span>(W_{+}left( mathbb {D}right) ,)</span> namely, we characterize invariant subspaces of this operator and describe its extended eigenvalues and extended eigenvectors. Moreover, we prove an addition formula for the spectral multiplicity of the direct sum of <i>q</i>-integration operator on <span>(W_{+}left( mathbb {D}right) )</span> and some Banach space operator.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"89 1-2","pages":"183 - 200"},"PeriodicalIF":0.5,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50449964","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信